2, cho △ABC⊥A có \(\frac{AB}{AC}\)=\(\frac{5}{12}\)biết AC-AB=14 . tính các cạnh của △ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : \(\frac{AB}{AC}\)\(=\frac{5}{12}\Rightarrow AC=\frac{12AB}{5}\left(1\right)\)
Ta có tiếp : \(AC-AB=14Acm\Rightarrow AC=AB+14\left(2\right)\)
Từ ( 1 ) và ( 2 ) => \(\frac{12AB}{5}=AB+14\)
Sau khi tính được \(AB\)thay vào 2 => AC
Vì ABC vuông nên áp dụng định lý pi-ta-go => BC
Ta có kết quả AB = 10cm , AC = 24cm ; BC = 26cm

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC

\(\frac{AB}{AC}=\frac{5}{2}=>AB=\frac{5}{2}AC\)
Áp dụng định lí Pi-ta-go vào tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\)
=> \(AB^2+AC^2=26^2(1)\)
Thay \(AB=\frac{5}{2}AC\)vào \((1)\)ta được :
\((\frac{5}{2}AC)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)
\(=>\frac{29}{4}AC^2=676=>AC^2\approx93,2=>AC\approx9,7\)

\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)
Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
=>AB2+AC2=262 (1)
Thay \(AB=\frac{5}{2}AC\) vào (1) ta được:
\(\left(\frac{5}{2}AC\right)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)
=>\(\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\Rightarrow AC\approx9,7\)
Sửa
\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)
Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
\(AB^2+AC^2=BC^2\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\Rightarrow\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\)
\(\Rightarrow AC\approx9,7\left(cm\right)\)
=>\(AB=\frac{5}{2}AC=\frac{5}{2}.9,7=24,25\left(cm\right)\)

Theo giả thiết AB : AC = 5 : 12
Suy ra A B 5 = A C 12 = A B + A C 5 + 12 = 34 17 = 2 . Do đó AB = 5.2 = 10 (cm);
AC = 2.12 = 24 (cm)
Tam giác ABC vuông tại A, theo định lý Pytago ta có:
B C 2 = A B 2 + A C 2 = 10 2 + 24 2 = 676 , suy ra BC = 26cm
Đáp án cần chọn là: C
Ta có : \(\frac{AB}{AC}=\frac{5}{12}\)
\(\Rightarrow AB=\frac{5}{12}.AC\)
Ta lại có : AC-AB=14
\(\Rightarrow AC-\frac{5}{12}AC=14\)
\(\Rightarrow\frac{7}{12}AC=14\)
\(\Rightarrow AC=24\)
\(\Rightarrow AB=\frac{5}{12}.24=10\)
Xét \(\Delta ABCvuôngtạiA:\)
BC2=AB2+AC2 (theo ĐL Py-ta -go)
\(\Rightarrow\)BC2=102+242=676
\(\Rightarrow BC=\sqrt{676}=26\)
bạn nhớ theo dõi và tick cho mk nhé