a) (x^54)^2 =x
b) (x-1)^x+2 =(x-1)^x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Do $|x+1|+|x+2|\geq 0$ với mọi $x$ theo tính chất trị tuyệt đối
$\Rightarrow x\geq 0$
$\Rightarrow x+1, x+2>0\Rightarrow |x+1|=x+1; |x+2|=x+2$. Khi đó:
$(x+1)+(x+2)=x$
$\Leftrightarrow x=-3$ (loại do $x\geq 0$)
Vậy không tồn tại $x$ thỏa mãn
b. Tương tự phần a:
$|x+1|+|x+2|+|x+3|\geq 0\Rightarrow 2x\geq 0\Rightarrow x\geq 0$
$\Rightarrow x+1, x+2, x+3>0$
$\Rightarrow |x+1|=x+1; |x+2|=x+2; |x+3|=x+3$. Khi đó:
$(x+1)+(x+2)+(x+3)=2x$
$\Leftrightarrow x=-6< 0$ (loại)
Vậy không tồn tại $x$ thỏa mãn.
c.
$|x+1|+|x+2|+|x+3|+|x+4|\geq 0$
$\Rightarrow 3x\geq 0\Rightarrow x\geq 0$
$\Rightarrow x+1,x+2, x+3, x+4>0$
$\Rightarrow |x+1|=x+1, |x+2|=x+2, |x+3|=x+3, |x+4|=x+4$. Khi đó:
$(x+1)+(x+2)+(x+3)+(x+4)=3x$
$4x+10=3x$
$x=-10< 0$ (loại vì $x\geq 0$)
Vậy không tồn tại $x$ thỏa mãn
d.
$|x+1|+|x+2|+|x+3|+|x+4|+|x+5|\geq 0$
$\Rightarrow 4x\geq 0\Rightarrow x\geq 0\Rightarrow x+1,x+2,x+3,x+4,x+5>0$
$\Rightarrow |x+1|=x+1, |x+2|=x+2, |x+3|=x+3, |x+4|=x+4, |x+5|=x+5$. Khi đó:
$(x+1)+(x+2)+(x+3)+(x+4)+(x+5)=4x$
$5x+15=4x$
$x=-15< 0$ (loại vì $x\geq 0$)
Vậy không tồn tại $x$ thỏa đề.
Bài 1:
\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)
2:
a: =-(x^2-3x+1)
=-(x^2-3x+9/4-5/4)
=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn
b: =-2(x^2+3/2x+3/2)
=-2(x^2+2*x*3/4+9/16+15/16)
=-2(x+3/4)^2-15/8<0 với mọi x
\(a,=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}=\dfrac{x+1}{x}\\ b,=\dfrac{-\left(x^2-5x-6\right)}{\left(x+2\right)^2}=\dfrac{-\left(x+1\right)\left(x-6\right)}{\left(x+2\right)^2}\)
a: \(\left(x+1\right)^2+\left(x+3\right)\left(x-2\right)-4x\)
\(=x^2+2x+1+x^2+x-6-4x\)
\(=2x^2-x-6\)
`@` ` \text {Ans}`
`\downarrow`
`a,`
`1/4+3/4*x=3/2-x`
`=> 1/4 + 3/4x - 3/2 + x = 0`
`=> (1/4 - 3/2) + (3/4x + x) = 0`
`=> -5/4 + 7/4x = 0`
`=> 7/4x = 5/4`
`=> x = 5/4 \div 7/4`
`=> x = 5/7`
Vậy, `x=5/7`
`b,`
`3/5*x-1/4=1/10*x-1/2`
`=> 3/5x - 1/4 - 1/10x + 1/2 = 0`
`=> (3/5x - 1/10x) + (-1/4 + 1/2)=0`
`=> 1/2x + 1/4 = 0`
`=> 1/2x = -1/4`
`=> x = -1/4 \div 1/2`
`=> x = -1/2`
Vậy, `x=-1/2`
`c,`
`3x-3/5=x-1/4`
`=> 3x - 3/5 - x + 1/4 = 0`
`=> (3x - x) - (3/5 - 1/4) = 0`
`=> 2x - 7/20 = 0`
`=> 2x = 0,35`
`=> x = 0,35 \div 2`
`=> x = 7/40`
Vậy, `x=7/40`
`d,`
`3/2*x-2/5=1/3*x-1/4`
`=> 3/2x - 2/5 - 1/3x + 1/4 = 0`
`=> (3/2x - 1/3x) - (2/5 - 1/4) = 0`
`=> 7/6x - 3/20 = 0`
`=> 7/6x = 3/20`
`=> x = 3/20 \div 7/6`
`=> x = 9/70`
Vậy, `x=9/70`
`@` `\text {Kaizuu lv uuu}`
a)
\(\dfrac{x}{x-2}+\dfrac{2}{2-x}\\ =\dfrac{x}{x-2}-\dfrac{2}{x-2}\\ =\dfrac{x-2}{x-2}\\ =1\)
b)
\(\dfrac{x^2}{x^2}-1\\ =1-1\\ =0??\)
\(a,2\left(x+1\right)=4-x\\ =>2x+2-4+x=0\\ =>3x-2=0\\ =>x=\dfrac{2}{3}\\ b,x^2-3x+2=0\\ =>x^2-2x-x+2=0\\ =>x\left(x-2\right)-\left(x-2\right)=0\\ =>\left(x-1\right)\left(x-2\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
`2(x+1)=4-x`
`<=> 2x+2=4-x`
`<=> 2x+x=4-2`
`<=> 3x=2`
`<=>x=2/3`
`------`
`x^2-3x+2=0`
`<=>x^2-2x-x+2=0`
`<=> (x^2-2x)-(x-2)=0`
`<=> x(x-2)-(x-2)=0`
`<=>(x-2)(x-1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
b: \(\Leftrightarrow\dfrac{-3x^2+36x+12}{3\left(x+4\right)\left(x-1\right)}=\dfrac{36\left(x-1\right)}{3\left(x+4\right)\left(x-1\right)}+\dfrac{12\left(x+4\right)}{3\left(x-1\right)\left(x+4\right)}\)
\(\Leftrightarrow-3x^2+36x+12=36x-36+12x+48\)
\(\Leftrightarrow-3x^2+36x+12-48x-12=0\)
\(\Leftrightarrow3x\left(x+4\right)=0\)
=>x=0(nhận) hoặc x=-4(loại)
b: \(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
=>-6x+16=0
=>-6x=-16
hay x=8/3(nhận)
c: \(\Leftrightarrow\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+2}\)
\(\Leftrightarrow2x\left(x+2\right)=2\left(x^2-1\right)\)
\(\Leftrightarrow2x^2+4x-2x^2+2=0\)
=>4x+2=0
hay x=-1/2(nhận)
a)ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
Ta có: \(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}=\dfrac{2x-1}{x\left(x+1\right)}\)
Suy ra: \(x^2-1+x-2x+1=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={1}
b) ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
Ta có: \(\dfrac{5}{x-3}-\dfrac{2x-3}{x+3}=\dfrac{2x\left(1-x\right)}{x^2-9}\)
\(\Leftrightarrow\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(2x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(5x+15-2x^2+6x+3x-9-2x+2x^2=0\)
\(\Leftrightarrow12x+6=0\)
\(\Leftrightarrow12x=-6\)
hay \(x=-\dfrac{1}{2}\)(thỏa ĐK)
Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)
x = 0
học tốt
x=0
chúc bn ok tốt nha bn
nữa nha bn