K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

\(x+x:5=12,6\)

\(\Rightarrow x\left(1+\dfrac{1}{5}\right)=12,6\)

\(\Rightarrow\dfrac{6}{5}x=12,6\)

\(\Rightarrow x=\dfrac{21}{2}=10,5\)

9 tháng 10 2021

cảm ơn nhé

9 tháng 7 2017

/x-3/>=0\(\Rightarrow\)-/x-3/<=0 maxP=12 khi x-3=0 \(\Rightarrow\)x=3

9 tháng 7 2017

\(P=-\left|x-3\right|+12\)

Vì \(-\left|x-3\right|\le0\Leftrightarrow-\left|x-3\right|+12\le12\)

Vậy GTLN của P là 12 tại \(-\left|x-3\right|=0\Leftrightarrow x=0\)

29 tháng 12 2016

a) x khác 2

b) với x<2

c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)

x-2=(-7,-1,1,7)

x=(-5,1,3,9)

29 tháng 12 2016

a) đk kiện xác định là mẫu khác 0

=> x-2 khác o=> x khác 2

b)

tử số luôn dương mọi x

vậy để A âm thì mẫu số phải (-)

=> x-2<0=> x<2 

c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu

cụ thể

x^2-2x+2x-4+4+3

ghép

x(x-2)+2(x-2)+7 

như vậy chỉ còn mỗi số 7 không chia hết cho x-2

vậy x-2 là ước của 7=(+-1,+-7) ok

15 tháng 9 2016

T/C của gttđ là >= 0 nên 

a) GTNN = -4

b) GTLN = 2

c) GTNN = 2

25 tháng 7 2016

a) 2005-X=1963

=>X=2005-1963=42

b) (X-5)x2=14

=>X-5=7

=>X=7+5=12

 Đúng 0

25 tháng 7 2016

a) 2005-X=1963

=>X=2005-1963=42

b) (X-5)x2=14

=>X-5=7

=>X=7+5=12

17 tháng 10 2021

10/54=5/27

17 tháng 10 2021

\(A=\dfrac{2}{9}\times\dfrac{5}{6}=\dfrac{5}{27}\)

3 tháng 4 2020

\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)

a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)

\(\Rightarrow C>0\forall x\)(đpcm)

b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)

\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)

\(\Leftrightarrow x\in\left\{0\right\}\)

....

c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)

Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)

\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

:33

\(45.6\cdot y+66.9\cdot y-12.6=567\)

\(y\cdot\left(45.6+66.9\right)=579.6\)

\(y\cdot112.5=579.6\)

\(y=5.152\)

45,6 . Y + 66,9 . Y - 12,6 = 567

y.(45,6+66,9)-12,6=567

y.112,5-12,6=567

y.112,5=579,6

y=5,152