chứng minh công thức S=\(\frac{S.100\%}{100+S}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}-1}\right)\)
\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}-1}\right)\)
ta chia S thành 10 nhóm: 1 và 99 nhóm như trên
nhận xét:
\(\frac{1}{2}+\frac{1}{3}<\frac{1}{2}.2=1\)
\(\frac{1}{2^2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}<\frac{1}{2^2}.4=1\)
\(\frac{1}{8}+...+\frac{1}{15}<\frac{1}{8}.8=1\)
..........
\(\frac{1}{2^{99}}+...+\frac{1}{2^{100}-1}<\frac{1}{2^{99}}.2^{99}=1\)
=> S < 1+ 1 + 1+...+ 1 = 100 => điều phải chứng minh
S là gì vậy bn
s: độ tan