phân tích đa thức thành nhân tử
a,11x^2+13xy+2y^2
b,x^4+4y^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
a: =(6x)^2-(3x-2)^2
=(6x-3x+2)(6x+3x-2)
=(9x-2)(3x+2)
d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)
\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)
=8x(x^2+1)
e: =(4x)^2-2*4x*3y+(3y)^2
=(4x-3y)^2
f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)
\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)
g: =(4x)^3+1^3
=(4x+1)(16x^2-4x+1)
k: =x^3(27x^3-8)
=x^3(3x-2)(9x^2+6x+4)
l: =(x^3-y^3)(x^3+y^3)
=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)
a) \(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
b) \(4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)
c) \(x^4-2x^3+x^2-2x=x^3\left(x-2\right)+x\left(x-2\right)=x\left(x-2\right)\left(x^2-1\right)=x\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
d) \(x^2-4y^2+2x+4y=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)=\left(x+2y\right)\left(x-2y+2\right)\)
a: \(=\left(x+1\right)\left(x^2-x+1\right)+5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+1\right)\)
a) Ta có: \(x^4+64\)
\(=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
b) Ta có: \(81x^4+4y^4\)
\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)
\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)
\(=\left(9x^2-6xy+2y^2\right)\left(9x^2+6xy+2y^2\right)\)
c) Ta có: \(x^5+x+1\)
\(=x^5+x^2-x^2+x-1\)
\(=x^2\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)
a: \(=x^2\left(x-2\right)\)
b: \(=\left(x-3\right)\left(2x-9\right)\)
\(a,=x^2\left(x-2\right)\\ b,=\left(x-3\right)\left(2x-9\right)\\ c,=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
11x^2+13xy+2y^2
=2(x+y)^2+9x^2+9xy
=2(x+y)^2+9x(x+y)
=(x+y)(11x+2y)
Làm nốt câu B cho bạn shitbo
\(x^4+4y^4\)
\(=\left(x^2\right)^2+\left(2y^2\right)^2\)
\(=\left(x^2\right)^2+\left(2y^2\right)^2+4x^2y^2-4x^2y^2\)
\(=\left[\left(x^2\right)^2+\left(2y^2\right)^2+4x^2y\right]-4x^2y^2\)
\(=\left(x^2+2y^2\right)^2-4x^2y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)
\(\Rightarrow x^4+4y^4\)\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)