cho số phức z thỏa mãn |z-1+2i|=\(\sqrt{5}\). tính giá trị lớn nhất của |z+1+i|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
HD: Ta có
Tập hợp điểm M(z) là đường tròn tâm I(3;-2), R=3.
Gọi A(1;2), B(5;2) và E(3;2) là trung điểm của AB suy ra P=MA+MB
Lại có
P lớn nhất ME lớn nhất.
Mà
Vậy
Chọn B.
Gọi M (x; y) là điểm biểu diễn của số phức z trên mặt phẳng Oxy.
Gọi điểm A(2; -2) ; B(-1; 3) và C(-1; -1)
Phương trình đường thẳng AB: 5x + 3y - 4 = 0.
Khi đó theo đề bài
Ta có . Do đó quỹ tích M là đoạn thẳng AB.
Tính CB = 4 và .
Hình chiếu H của C trên đường thẳng AB nằm trên đoạn AB.
Vậy
Đáp án A
Em có:
4 = z + 2 + i = z − 1 − 2 i + 3 + 3 i ≥ z − 1 − 2 i − 3 + 3 i
Chọn C.
Ta có |z – 1 – 2i| = 4. Hay |z – (1 + 2i)| = 4.
Đặt w = z + 2 + i
Gọi M( x; y) là điểm biểu diễn của số phức w trên mặt phẳng Oxy.
Khi đó, tập hợp điểm biểu diễn của số phức w là đường tròn tâm I, với I là điểm biểu diễn của số phức 1 + 2i + 2i + 2 + i = 3 + 3i.
Tức là tâm I(3; 3) , bán kính r = 4.
Do đó:
Vậy S = m2 + M2 = 68.
\(\sqrt{5}=\left|z-1+2i\right|=\left|z+1+i-\left(2-i\right)\right|\ge\left|\left|z+1+i\right|-\left|2-i\right|\right|\)
\(\Rightarrow\left|\left|z+1+i\right|-\sqrt{5}\right|\le\sqrt{5}\)
\(\Rightarrow\left|z+1+i\right|-\sqrt{5}\le\sqrt{5}\)
\(\Rightarrow\left|z+1+i\right|\le2\sqrt{5}\)