K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 6 2019

ĐKXĐ:...

Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:

\(\frac{x+\frac{5}{x}-3}{x+\frac{5}{x}-4}-\frac{x+\frac{5}{x}-5}{x+\frac{5}{x}-6}=-\frac{1}{4}\)

Đặt \(x+\frac{5}{x}-6=a\) ta được:

\(\frac{a+3}{a+2}-\frac{a+1}{a}=-\frac{1}{4}\)

\(\Leftrightarrow a\left(a+3\right)-\left(a+1\right)\left(a+2\right)=-\frac{1}{4}a\left(a+2\right)\)

\(\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{5}{x}-6=2\\x+\frac{5}{x}-6=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+5=0\\x^2-2x+5=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=4\pm\sqrt{11}\)

13 tháng 2 2022

Vì sao lm ra x=0 ko phải là No vậy bn?

2 tháng 2 2020

\(ĐKXĐ:x\ne1;x\ne5\)

\(\frac{x^2-3x+5}{x^2-4x+5}-\frac{x^2-5x+5}{x^2-6x+5}=-\frac{1}{4}\)

\(\Leftrightarrow\frac{4\left(x^2-6x+5\right)\left(x^2-3x+5\right)-4\left(x^2-4x+5\right)\left(x^2-5x+5\right)+\left(x^2-4x+5\right)\left(x^2-6x+5\right)}{4\left(x^2-4x+5\right)\left(x^2-6x+5\right)}=0\)

Từ chỗ này xuống cậu tự phân tích tử thức ròi rút gọn nhé ! Vì hơi dài nên tớ sẽ k viết.

\(\Leftrightarrow-10x^3+26x^2-50x+x^4+25=0\)

\(\Leftrightarrow x^4-8x^3+5x^2-2x^3+16x^2-10x+5x^2-40x+25=0\)

\(\Leftrightarrow x^2\left(x^2-8x+5\right)-2x\left(x^2-8x+5\right)+5\left(x^2-8x+5\right)=0\)

\(\Leftrightarrow\left(x^2-8x+5\right)\left(x^2-2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-8x+5=0\left(tm\right)\\\left(x-1\right)^2+4=0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4+\sqrt{11}\\x=4-\sqrt{11}\end{cases}}\)

Vậy tập nghiệm của phương trình là :\(S=\left\{4+\sqrt{11};4-\sqrt{11}\right\}\)

2 tháng 2 2020

\(ĐKXĐ:x\ne1;x\ne5\)

Đặt \(u=x^2+5\)

Phương trình trở thành\(\frac{u-3x}{u-4x}-\frac{u-5x}{u-6x}=-\frac{1}{4}\)

\(\Leftrightarrow\frac{\left(u-3x\right)\left(u-6x\right)-\left(u-4x\right)\left(u-5x\right)}{\left(u-4x\right) \left(u-6x\right)}=-\frac{1}{4}\)

\(\Leftrightarrow\frac{u^2-9ux+18x^2-u^2+9ux-20x^2}{u^2-10ux+24x^2}=\frac{-1}{4}\)

\(\Leftrightarrow\frac{-2x^2}{u^2-10ux+24x^2}=\frac{-1}{4}\)

\(\Leftrightarrow-u^2+10ux-24x^2=-8x^2\)

\(\Leftrightarrow-u^2+10ux-16x^2=0\)

\(\Delta=\left(10x\right)^2-4.\left(-1\right).\left(-16x^2\right)=36x^2,\sqrt{\Delta}=6x\)

\(\Rightarrow\orbr{\begin{cases}u=\frac{-10x+6x}{-2}=2x\\u=\frac{-10x-6x}{-2}=8x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2+5=2x\\x^2+5=8x\end{cases}}\)

+)  \(x^2+5=2x\Leftrightarrow x^2-2x+5=0\)(1)

Mà \(x^2-2x+5=\left(x-1\right)^2+4>0\)nên (1) vô nghiệm

+) \(x^2+5=8x\Leftrightarrow x^2-8x+5=0\)

\(\Delta=8^2-4.5=44,\sqrt{\Delta}=\sqrt{44}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{8+\sqrt{44}}{2}=4+\sqrt{11}\\x=\frac{8-\sqrt{44}}{2}=4-\sqrt{11}\end{cases}}\)

Vậy tập nghiệm của phương trình\(S=\left\{4+\sqrt{11};4-\sqrt{11}\right\}\)

d: =>4x+6=15x-12

=>4x-15x=-12-6=-18

=>-11x=-18

hay x=18/11

e: =>\(45x+27=12+24x\)

=>21x=-15

hay x=-5/7

f: =>35x-5=96-6x

=>41x=101

hay x=101/41

g: =>3(x-3)=90-5(1-2x)

=>3x-9=90-5+10x

=>3x-9=10x+85

=>-7x=94

hay x=-94/7

24 tháng 1 2022

làm rõ ra giúp với ạ, ghi v k hỉu j hết ;-;

26 tháng 3 2020
https://i.imgur.com/s7F6X6v.jpg
Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

25 tháng 3 2020
https://i.imgur.com/NOxfqjV.jpg
25 tháng 3 2020
https://i.imgur.com/awOKwJi.jpg
22 tháng 4 2020

Bài làm

a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)

\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)

\(\Leftrightarrow6x+4=0\)

\(\Leftrightarrow x=-\frac{4}{6}\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy x = -2/3 là nghiệm.

23 tháng 4 2020

@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4

Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)