CMR nếu a/b<c/d thì a/b<a+c/b+d<c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
=> \(\dfrac{a}{b}=1\Rightarrow a=b\)
=> \(\dfrac{b}{c}=1\Rightarrow b=c\)
=>\(\dfrac{c}{a}=1\Rightarrow c=a\)
Vậy a=b=c
Dùng tỉ lệ thức em ha
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
Suy ra\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=1\) Từ đó suy ra a=b=c
Vì a = b => \(\hept{\begin{cases}\frac{a}{b}=1\\a+m=b+m\Rightarrow\frac{a+m}{b+m}=1\end{cases}}\)
=> \(\frac{a}{b}=\frac{a+m}{b+m}=1\left(đpcm\right)\)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
\(a^2+b^2+4=ab-2\left(a+b\right)\)
\(\Leftrightarrow2a^2+2b^2+8=2ab-4a-4b\)
\(\Leftrightarrow\left(a^2+4a+4\right)+\left(b^2+4b+4\right)+\left(a^2-ab+b^2\right)=0\)
\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a-b\right)^2=0\)
Do \(\left(a+2\right)^2,\left(b+2\right)^2,\left(a-b\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}a+2=0\\b+2=0\\a-b=0\end{matrix}\right.\)\(\Rightarrow a=b=-2\left(đpcm\right)\)
Giả sử:
\(A=\left\{1;2\right\}\)
\(B=\left\{1;2;3\right\}\)
\(\Rightarrow\text{ A là tập hợp con của B}\)
\(\text{Lại có: }A\subset B=\left\{1,2\right\}=A\)
Vậy ta suy ra ĐPCM
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< cb\) (1)
Ta quy đồng hai PS a/b và a+c/b+d để so sánh:
\(\frac{a}{b}...\frac{a+c}{b+d}\)
\(\Leftrightarrow a\left(b+d\right)....b\left(a+c\right)\)
\(\Leftrightarrow ab+ad.....ab+cb\)
\(\Leftrightarrow ad....cb\)
Vì (1) => \(ad< cb\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(2\right)\)
Quy đồng PS a+c/b+d và c/d để so sánh ta được:
\(\frac{a+c}{b+d}....\frac{c}{d}\)
\(\Leftrightarrow\left(a+c\right)d....\left(b+d\right)c\)
\(\Leftrightarrow ad+cd....+bc+cd\)
\(\Leftrightarrow ad...bc\)
Vì (1)
\(\Rightarrow ad< bc\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(3\right)\)
Từ (2) và (3) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< cb\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{d+b}\left(1\right)\)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< cb\)
\(\Rightarrow ad+cd< cb+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)