cho M=\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
với x>= 4
a rút gọn M
b tìm x để M=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M=\dfrac{x-7}{x-4\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-7+\sqrt{x}-3-\sqrt{x}+1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\)
b) Để \(M>\dfrac{3}{4}\) thì \(M-\dfrac{3}{4}>0\)
\(\Leftrightarrow\dfrac{\sqrt{x}+3}{\sqrt{x}-1}-\dfrac{3}{4}>0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+12-3\sqrt{x}+3}{4\left(\sqrt{x}-1\right)}>0\)
\(\Leftrightarrow\sqrt{x}-1>0\)
\(\Leftrightarrow x>1\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>1\\x\ne9\end{matrix}\right.\)
a: \(M=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b: Khi \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\) thì
\(M=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}-2}{\sqrt{\left(\sqrt{2}+1\right)^2}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)
\(=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\left(\sqrt{2}-1\right)^2=3-2\sqrt{2}\)
c: M>0
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\)
mà \(\sqrt{x}>0\)
nên \(\sqrt{x}-2>0\)
=>\(\sqrt{x}>2\)
=>x>4
a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)
=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)
=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)
=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)
Để BPT luôn đúng thì m<-0,3
a. \(M=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{\left(x-4\right)+2\cdot\sqrt{x-4}\cdot2+2^2}+\sqrt{\left(x-4\right)-2\cdot\sqrt{x-4}\cdot2+2^2}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b.
\(M=4\Leftrightarrow2\sqrt{x-4}=4\)
\(\Leftrightarrow\sqrt{x-4}=2\)
\(\Leftrightarrow x-4=4\)
\(\Leftrightarrow x=8\) (tmđk)