tìm x
/2x^2+3/+ 3(x-y+1)^2014< hoặc bằng 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|x-3\right|^{2014}\ge0;\left|6+2y\right|^{2015}\ge0\)
\(\Rightarrow\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0\)
Mà đề lại cho : \(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\le0\Rightarrow\left|x-3\right|^{2014}=0;\left|6+2y\right|^{2015}=0\)
\(\Rightarrow x-3=0;6+2y=0\Rightarrow x=3;y=-3\)
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
\(\frac{5^{2015}+5^{2014}}{5^{2014}+5^{2013}}=\frac{5^{2014}.\left(5+1\right)}{5^{2013}.\left(5+1\right)}=5\)
xy + 3x - y = 8
x(y + 3) - (y + 3) = 8 - 3
(x - 1)(y + 3) = 5.Ta có bảng sau :
x - 1 | -5 | -1 | 1 | 5 |
y + 3 | -1 | -5 | 5 | 1 |
x | -4 | 0 | 2 | 6 |
y | -4 | -8 | 2 | -2 |
Vậy (x ; y) = (-4 ; -4) ; (0 ; -8) ; (2 ; 2) ; (6 ; -2)
a, x= 3;2;1;0
b, x= 0;1;2;3;4;5
c, x= 0;1;2
d, x= 2;3;4;5;6
e, x= 0;1;2;3
Nho k nha
Bài 1:
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=\left(x-2\right)^2\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3-x+2\right)\left(2x-3+x-2\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(3x-5\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow x=1\)
b: \(\left|x\right|< 3\)
nên -3<x<3
c: \(\left|x\right|\ge5\)
nên \(\left[{}\begin{matrix}x\ge5\\x\le-5\end{matrix}\right.\)
Bài 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=7\end{matrix}\right.\)