Chứng minh rằng phương trình: 2mx - 5 = -x + 6m - 2 luôn có một nghiệm x không phụ thuộc vào m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với m=2 thì phương trình (1) trở thành
x mũ 2 + 2(2+2)x +4.2 -1 =0
<=> x mũ 2 + 8x +7 =0
<=> x mũ 2 + x + 7x +7 =0
<=> (x+1)(x+7) =0
<=> x= -1 hoặc x= -7
b, Ta có:
penta' = (m+2)mũ2 - 4m -1
= m m 2 +4m +4 -4m -1
= m mũ2 +3
vì m mũ2 luôn > hoặc = 0 với mọi m
suy ra m mũ2 +3 luôn >0 với mọi m
suy ra penta' >0 hay có hai nghiệm phân biệt (đpcm)
CÒN PHẦN SAU THÌ MK KO BIẾT LÀM .... THÔNG CẢM
a, Thay m = 1 ta đc
\(x^2-1=0\Leftrightarrow x=1;x=-1\)
b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)
Để pt có 2 nghiệm pb khi delta' > 0
\(m-2\ne0\Leftrightarrow m\ne2\)
c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)
d.
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)
Trừ vế cho vế:
\(\Rightarrow x_1+x_2-x_1x_2=1\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
Xin lựa a;b ... c;d e rỗng tuếch :>> (ko bt đúng ko nữa).
a, Thay m = 5 vào biểu thức ta đc
\(x^2-2\left(5+6\right)x+5-4=0\)
\(x^2-33x+1=0\)
\(\Delta=\left(-33\right)^2-4.1.1=1089-4=1085>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{33-\sqrt{1085}}{2};x_2=\frac{33+\sqrt{1085}}{2}\)
b, Ta có :
\(\Delta=\left(2m-2\right)^2-4\left(m-4\right)=4m^2-4-4m+16=4m^2-4m+12\)
\(=\left(4m^2-4m+1\right)+11\ge11\forall m\)
Vậy phuwong trình có 2 nghiệm phân biệt vs mọi x
- Xét phương trình đề cho có :
\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)
\(=m^2-3m+3\ge\dfrac{3}{4}>0\)
- Phương trình luôn có hai nghiệm phân biệt với mọi m .
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)
pt : \(x^2-\left(2m+1\right)x+m^2+m-1=0\)
\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(m^2+m-1\right)\\ =4m^2+4m+1-4m^2-4m+4=5>0\)
=> pt luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi ét :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1.x_2=m^2+m-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=2m+1\\x_1.x_2=m^2+m-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4\left(x_1+x_2\right)^2=4m^2+4m+1\\4x_1x_2=4m^2+4m-4\end{matrix}\right.\)
\(\Rightarrow4\left(x_1+x_2\right)^2-4x_1x_2=5\) ( Không phụ thuộc vào m - DPCM )
a: Δ=(2m+2)^2-4(m-6)
=4m^2+8m+4-4m+24
=4m^2+4m+28
=(2m+1)^2+27>0
=>Phương trình luôn có hai nghiệm phân biệt
c: Để (1) có ít nhất 1 nghiệm dương thì
m-6<0 hoặc (2m+2>0 và m-6>0)
=>m>6 hoặc m<6
\(2mx-5=-x+6m-2\)
\(\Leftrightarrow2m\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(2m+1\right)=0\)
=> phương trình luôn có một nghiệm là x=3
2mx - 5 = -x + 6m - 2
<=> 2mx - 5 + x - 6m + 2 = 0
<=> 2mx + x - 6m - 3 = 0
<=> 2m( x - 3 ) + 1( x - 3 ) = 0
<=> ( 2m + 1 )( x - 3 ) = 0
=> Phương trình có một nghiệm x = 3 không phụ thuộc vào m ( đpcm )