K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2019

\(\sqrt{2+\sqrt{3}}=\sqrt{\frac{1}{4}+3+\sqrt{3}-\frac{5}{4}}\)

\(=\sqrt{\left(\frac{1}{2}+\sqrt{3}\right)^2-\frac{5}{4}}=\sqrt{\left(\frac{1}{2}+\sqrt{3}-\frac{\sqrt{5}}{2}\right)\left(\frac{1}{2}+\sqrt{3}+\frac{\sqrt{5}}{2}\right)}\)

còn đâu bạn tự làm nốt nhé!!haha

24 tháng 7 2019

 Có \(\left(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\right)^2\)

\(=\left(\sqrt{17-3\sqrt{32}}\right)^2+2\left(\sqrt{17-3\sqrt{32}}\right)\left(\sqrt{17+3\sqrt{32}}\right)\)\(+\left(\sqrt{17=3\sqrt{32}}\right)^2\)

 \(=17-3\sqrt{32}+2\sqrt{\left(17-3\sqrt{32}\right)\left(17+3\sqrt{32}\right)}\)\(+17+3\sqrt{32}\)

\(=34+2\sqrt{17^2-9.32}\)

\(=34+2\sqrt{289-288}\)

\(=34+2\sqrt{1}=34+2=36\)

\(\Rightarrow\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)

\(=\sqrt{36}=6\)

(Vì có \(\hept{\begin{cases}\sqrt{17-3\sqrt{32}}\ge0\\\sqrt{17+3\sqrt{32}}\ge0\end{cases}}\)nên \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\ge0\))

24 tháng 7 2019

Ở cuối dòng 2 mình nhầm dấu + thành dấu = nghe mọi người

NV
1 tháng 8 2021

\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)

\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)

\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)

\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)

\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)

\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)

Bài 1: 

c: \(\left(-5x-y\right)^3=-125x^3-75x^2y-15xy^2-y^3\)

h: \(\left(3y-2x^2\right)^3=27y^3-54y^2x^2+36yx^4-8x^6\)

23 tháng 9 2021

Bài 1:

c. (-5x - y)3 = -125x3 - 50x2y - 10xy2 - y3

d. (3y - 2x2)3 = 27y3 - 18x2y2 + 24xy4 - 8x6

23 tháng 9 2021

a) \(\left(2x+1\right)^3\)

\(=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\)

\(=8x^3+12x^2+6x+1\)

b) \(\left(x-3\right)^3\)

\(=x^3-3.x^2.3+3.x.3^2-3^3\)

\(=x^3-9x^2+27x-27\)

Bài 2: 

a: \(x^3+15x^2+75x+125=\left(x+5\right)^3\)

b: \(1-15y+75y^2-125y^3=\left(1-5y\right)^3\)

c: \(8x^3+4x^2y+\dfrac{3}{2}xy^2+8y^3=\left(2x+2y\right)^3\)

 

1 tháng 7 2018

1) \(\left(3x-2\right)^2=9x^2-12x+4\)

\(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2=\dfrac{1}{4}x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\)

\(\left(a+b\sqrt{3}\right)^2=a^2+2\sqrt{3}ab+3b^2\)

2) \(4a^2+4a+1=\left(2a+1\right)^2\)

\(9x^2-6x+1=\left(3x-1\right)^2\)

\(\dfrac{1}{4}x^2-\dfrac{1}{3}xy+\dfrac{1}{9}y^2=\left(\dfrac{1}{2}x-\dfrac{1}{3}y\right)^2\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) An: "\(\forall x \in \mathbb R ,{x^2} \ge 0\)"

b) Bình: "\(\exists x \in ,{x^2} < 0\)"

31 tháng 7 2015

x^2 + y^2 = (x + y +\(\sqrt{2xy}\))(x + y - \(\sqrt{2xy}\))

21 tháng 5 2018
  1. {\displaystyle a^{2}+b^{2}=(a+b)^{2}-2ab=(a-b)^{2}+2ab}
  2. {\displaystyle a^{2}-b^{2}=(a+b)(a-b)}

 các bn tk mk nha .mk cảm ơn nhiều

10 tháng 10 2021

a: \(4-6x+\dfrac{9}{4}x^2=\left(2-\dfrac{3}{2}x\right)^2\)

c: \(x^6-3x^5+3x^4-x^3=\left(x^2-x\right)^3\)

24 tháng 7 2023

\(\left(3x-2y\right)^2+4\left(3x-2y\right)+4\\ =\left(3x-2y\right)^2+2.2\left(3x-2y\right)+2^2\\ =\left(3x-2y+2\right)^2\)

Áp dụng HĐT số 1 : \(A^2+2AB+B^2=\left(A+B\right)^2\)