cm : D = 11 mũ 2009 + 11 mũ 2008 +....+ 11 mũ 2000 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
A = \(11^9\) + 11\(^8\) +...+ 11\(^2\) + 11 + 1
A = 11\(^{9}\) + 11\(^8\) +...+ 11\(^2\) + 11+ 11\(^0\)
Xét dãy số: 0; 1; 2; 3; ..; 8; 9
Dãy số trên là dãy số cách đều với khoảng cách là: 9 - 8 = 1
Số số hạng của dãy số trên là: (9 - 0) : 1 + 1 = 10
Vậy A là tổng của 10 hạng tử có tận cùng là 1
Từ lập luận trên ta có:
A = \(\overline{\ldots1}\) x 10 = \(\overline{\ldots0}\) ⋮ 5 (đpcm)
\(ab+ba=(10a+b)+(10b+a)\)
\(=10a+b+10b+a\)
\(=11a+11b\)
\(=11\left(a+b\right)\)
\(a+b\inℕ\Rightarrow ab+ba⋮11\)
\(A=2+2^2+2^3+\cdot\cdot\cdot+2^{2008}\)
\(\Rightarrow2A=2^2+2^3+2^4+\cdot\cdot\cdot+2^{2009}\)
\(\Rightarrow2A-A=\left(2^2+\cdot\cdot\cdot2^{2009}\right)-\left(2+\cdot\cdot\cdot+2^{2008}\right)\)
\(\Rightarrow A=2^{2009}-2\)
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
a)116+115=(..................1)+(..................1)=..........................2
Vì có chữ số tận cùng là 2 nên chia hết cho 4
Bài này thì chắc phải dùng đồng dư -_-
a) Ta có:
11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5 = -1 (mod 4) => 115 + 1 chia hết cho 4
=> 116 đồng dư với (-1)6 (mod 4)
=> 116 đồng dư với 1 (mod 4)
=> 116 - 1 chia hết cho 4
=> (116 - 1) + (115 + 1) chia hết cho 4
=> 116 + 115 chia hết cho 4
cho dãy số 2 , 3 ,4,8 ,7,13,11,18 ,... Tìm 3 số tiếp theo của dãy và quy luật của dãy
\(D=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13+13.3^3+...+13.3^9\Rightarrow D⋮13\)
\(D=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=40+40.3^4+40.3^8\Rightarrow D⋮40\)
Biểu thức E làm tương tự, ý đầu ghép 3 số với nhau được nhân tử là 91 chia hết 13, ý sau ghép 4 số được nhân tử 820 chia hết 41
\(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9\left(a-b\right)⋮9\)
\(\overline{abc}-\overline{cba}=100a+10b+c-\left(100c+10b+a\right)=99\left(a-c\right)⋮99\)
Câu sau bạn ghi đề sai nhé, đề đúng phải là ab+cd chia hết 99
\(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)⋮99\Rightarrow\overline{ab}+\overline{cd}⋮99\)
\(\overline{abcd}=100\overline{ab}+\overline{cd}=101\overline{ab}-\overline{ab}+\overline{cd}=101\overline{ab}-\left(\overline{ab}-\overline{cd}\right)\)
Mà \(101\overline{ab}⋮101\Rightarrow\overline{ab}-\overline{cd}⋮101\)
\(\overline{abcdef}=10000\overline{ab}+100\overline{cd}+\overline{ef}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{ef}\right)\)
Do \(9999⋮11\) ; \(99⋮11\); \(\overline{ab}+\overline{cd}+\overline{ef}⋮11\Rightarrow\overline{abcdef}⋮11\)
D = 112009 + 112008 + ... + 112000 ( Có 10 SH )
Thấy mỗi số hạng của D có dạng 11n ( n = 2000; 2001;..;2009 ) đều có chữ số tận cùng là 1
=> D có chữ số tận cùng là 0
=> D \(⋮\)5 ( đpcm )
\(D=11^{2009}+11^{2008}+11^{2007}+...+11^{2000}\)
Số số hạng là: (2009 - 2000) : 1 + 1 = 10 (số)
Mà ta thấy số nào tận cùng bằng 1 lũy thừa bao nhiêu cũng tận cùng bằng 1
\(\Rightarrow D=...1+...1+...1+...+...1\)
\(\Rightarrow D=...0\)
Mà số nào tận cùng bằng 0 thì chia hết cho 5
Vậy \(D⋮5\)(ĐPCM)