cho x, y, z > 0 tìm min a= x/y+z +y/x+z + z/x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng: (a + b)² ≥ 4ab Ta có:
(x + y + z)² ≥ 4(x + y)z hay 1 ≥ 4(x + y)z (*) (Vì x + y + z = 1)
=> (x + y)/xyz ≥ 4(x + y)²z/xyz ( Nhân hai vế (*) với (x + y)/xyz)
=> (x + y)/xyz ≥ 4.4xyz/xyz = 16 (vì (x + y)² ≥ 4xy)
Vậy min A = 16 <=> x = y; x + y = z và x + y + z = 1
=> x = y = 1/4; z = 1/2
bn Phùng Gia Bảo nhầm 1 chỗ r nhe
C1: \(A=\frac{x+y+z}{xyz}=\frac{1}{\left(\sqrt[3]{xyz}\right)^3}\ge\frac{1}{\left(\frac{x+y+z}{3}\right)^3}=\frac{1}{\frac{1}{27}}=27\)
C2: \(A=\frac{x+y+z}{xyz}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\ge\frac{9}{\frac{\left(x+y+z\right)^2}{3}}=\frac{9}{\frac{1}{3}}=27\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)
ta có: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)(dấu = xảy ra khi \(\left(y+z\right)^2=4x^2\)↔y+z=2x)
tương tự ta có:\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)(dấu = cũng xảy ra khi x+z=2y;x+y=2z)
cộng từng vế ta có:P+\(\frac{x+y+z}{2}\ge x+y+z\)
→P\(\ge\frac{x+y+z}{2}\)mà x+y+x=1
\(P\ge\frac{1}{2}\)↔\(\begin{cases}y+z=2x\\x+z=2y\\x+y=2z\end{cases}\)→x=y=z=1/3
\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)
Tương tự và cộng lại:
\(A\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)
\("="\Leftrightarrow x=y=z=1\)
Dễ dàng CM được BĐT sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)(BĐT Nestbit)
Vậy: \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge3\)
\(\Leftrightarrow P+a+b+c\ge3\Leftrightarrow P\ge3-2=1\)
Vậy Min P=1 <=> x=y=z=\(\frac{2}{3}\)
áp dụng BĐT C-S dạng engel : A >/ x+y+z
áp dụng BĐT AM-GM x+y+z >/ căn xy + căn yz + căn zx
=>minA = 1
Tôi bổ sung đề bài : Cho x,y,z >0 và x+y+z=1 tìm min của x^2(y+z)/yz + y^2(x+z)/xz + z^2(x+y)/xy?
BĐT cô si: x²/z + z ≥ 2x và x²/y + y ≥ 2x => x²/z + x²/y + z+y ≥ 4x
=> x²(y+z)/yz + y+z ≥ 4x
tương tự: y²(x+z)/xz + x+z ≥ 4y
và z²(x+y)/xy + x+y ≥ 4z
cộng lại hết: x²(y+z)/yz + y²(x+z)/xz + z²(x+y)/xy + 2(x+y+z) ≥ 4(x+y+z)
=> x²(y+z)/yz + y²(x+z)/xz + z²(x+y)/xy ≥ 2(x+y+z) = 2
min = 2, đạt khi x = y = z = 1/3
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Bổ sung chi vậy bn
Có; \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+xz+yz\right)}\ge\frac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\frac{3}{2}\)
Vậy Min A=3/2