Cho tam giác ABC.Gọi M là trung điểm của BC.Chứng minh rằng : \(AM< \frac{AB+AC}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét tam giác AMB và tam giác AMC
AB=AC ( giả thiết )
AM cạnh chung
BM = CM (M là trung điểm cạnh BC)
Vậy tam giác AMB = tam giác AMC
a. Chứng minh tam giác AMB = tam giác AMC :
AM là cạnh chung
AB = AC ( giả thiết )
BM = MC ( vì M là trung điểm của tam giác ABC )
Xuy ra : tam giác AMB = tam giác AMC
CM : AM < (AB+BC):2 Tren tia AM lay D / M la trung diem AD cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD ta co : AD AM < ( AC+AB):2 - cm ( AB+AC-BC):2 < AM ta co : AB < AM+BM ( bdt trong tam giac ABM ) AC< AM+MC ( bdt trong tam giac AMC ) ==> AB+AC < AM+BM+AM+MC
:34
Trên tia đối của tia MA lấy điểm K sao cho MK=MA
Xét \(\Delta AMB\) và \(\Delta KMC\) có:
\(AM=MK\)
\(\widehat{AMB}=\widehat{KMC}\left(đ.đ\right)\)
\(MB=MC\)
\(\Rightarrow\Delta AMB=\Delta KMC\left(c.g.c\right)\)
\(\Rightarrow AB=CK\)
Theo BĐT tam giác,ta có:
\(AC+CK>AK\)
\(\Rightarrow AC+AB>2AM\)
\(\Rightarrow AM< \frac{AB+AC}{2}\left(đpcm\right)\)
Bạn tự vẽ hình
Lấy E đối xứng với A qua M
Có M là tđ của AE và BC
nên ABCE là hình bình hành
nên AB=CE
Xét tam giác ACE có AC+CE>AE
suy ra AC+AB>2AM
hay (AC+AB)/2>AM(đpcm)