Câu 1
Vẽ trên MP tọa độ tam giác ABC có A (0;1) B(0;5) C(4;0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Tọa độ M là trung điểm của AC là:
\(\left\{{}\begin{matrix}x=\dfrac{-3+2}{2}=-\dfrac{1}{2}\\y=\dfrac{1+2}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Tọa độ N là trung điểm của AB là:
\(\left\{{}\begin{matrix}x=\dfrac{\left(-3\right)+\left(-2\right)}{2}=-\dfrac{5}{2}\\y=\dfrac{1+4}{2}=\dfrac{5}{2}\end{matrix}\right.\)
B(-2;4); M(-1/2;3/2)
Gọi (d1): y=ax+b là phương trình đường thẳng BM
Vì (d1) đi qua B(-2;4) và M(-1/2;3/2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2a+b=4\\-\dfrac{1}{2}a+b=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}a=\dfrac{5}{2}\\-2a+b=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-\dfrac{5}{2}:\dfrac{3}{2}=-\dfrac{5}{3}\\b=4+2a=4-\dfrac{10}{3}=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: BM: \(y=-\dfrac{5}{3}x+\dfrac{2}{3}\)
C(2;2); N(-5/2;5/2)
Gọi (d2): y=ax+b là phương trình đường thẳng CN
Vì (d2) đi qua C(2;2) và N(-5/2;5/2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=2\\-\dfrac{5}{2}a+b=\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{2}a=-\dfrac{1}{2}\\2a+b=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-\dfrac{1}{2}:\dfrac{9}{2}=-\dfrac{1}{9}\\b=2-2a=2+\dfrac{2}{9}=\dfrac{20}{9}\end{matrix}\right.\)
Vậy: CN: \(y=-\dfrac{1}{9}x+\dfrac{20}{9}\)
b: Tọa độ trọng tâm G của ΔABC là:
\(\left\{{}\begin{matrix}x=\dfrac{-3+\left(-2\right)+2}{3}=-\dfrac{3}{3}=-1\\y=\dfrac{1+4+2}{3}=\dfrac{7}{3}\end{matrix}\right.\)
Giả sử trực tâm của tam giác ABC có tọa độ \(H\left(x;y\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{BC}=\left(6;-2\right)\\\overrightarrow{AH}=\left(x-1;y\right)\end{matrix}\right.\Rightarrow\overrightarrow{BC}\perp\overrightarrow{AH}\Leftrightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)
\(\Leftrightarrow6\left(x-1\right)-2y=0\)
\(\Leftrightarrow3x-y=3\left(1\right)\)
Lại có:
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;1\right)\\\overrightarrow{CH}=\left(x-5;y+1\right)\end{matrix}\right.\Rightarrow\overrightarrow{AB}\perp\overrightarrow{CH}\Leftrightarrow\overrightarrow{CH}.\overrightarrow{AB}=0\)
\(\Leftrightarrow-2\left(x-5\right)+y+1=0\)
\(\Leftrightarrow-2x+y=-11\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-27\end{matrix}\right.\Rightarrow H\left(-8;-27\right)\)
a: vecto AB=(1;1)
vecto AC=(2;6)
vecto BC=(1;5)
b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)
\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)
\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)
=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)
c: Tọa độ trung điểm của AB là:
x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5
Tọa độ trung điểm của AC là;
x=(1+3)/2=2 và y=(-1+5)/2=4/2=2
Tọa độ trung điểm của BC là:
x=(2+3)/2=2,5 và y=(0+5)/2=2,5
d: ABCD là hình bình hành
=>vecto AB=vecto DC
=>3-x=1 và 5-y=1
=>x=2 và y=4