Chứng minh: a + 4b chia hết cho 13 <=> 10a + b chia hết cho 13
Ai nhanh được tick nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: (2x+3y) chia hết cho 17 => 4(2x+3y) chia hết cho 17 => 8x+12y chia hết cho 17
Ta có: 8x+12y+9x+5y
= 17x+17y=17(x+y) chia hết cho 17
Mà 8x+12y chia hết cho 17 => 9x+5y chia hết cho 17 => đpcm.
b)ta có a+4b chia hết cho 13
=> a+4b+13a sẽ chia hết cho 13
hay 14a+4b chia hết cho 13
=> 4(10a+b)chia hết cho 13
mà 4 ko chia hết cho 13 nên 10a+b chia hết cho 13
Giải:
Đặt \(a+4b\) là x; \(10a+b\) là y (\(x,y>0\))
Ta có:
\(10x-y=10\left(a+4b\right)-\left(10a+b\right)=10a+40b-10a-b=39b\)
Vì \(39b⋮10\)
\(\Leftrightarrow10x-y⋮13\)
Theo đề bài ta có \(x⋮13\)
\(\Leftrightarrow10x⋮13\)
\(\Rightarrow y⋮13\)
Hay \(10a+b⋮13\) (ĐPCM)
Đặt A = a + 4b; B = 10a + b
Xét hiệu: 4B - A = 4.(10a + b) - (a + 4b)
= 40a + 4b - a - 4b
= 39a
Mà (4;13)=1 \(\Rightarrow B⋮13\left(1\right)\)
Từ (1) và (2) => đpcm
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)
\(\Rightarrow\left(a+5b\right)+\left(11a+11b\right)⋮11\)
\(\Rightarrow\left(a+5b\right)+11.\left(a+b\right)⋮11\)
\(\Rightarrow a+5b⋮11\)
10a + b chia hết cho 13 khi a = 1 và b = 3
a = 2 đồng thời b = a x 3
a = 3 thì b = a x 3 = 3 x 3 = 9
b luôn = a x 3
xét a + 4 b = a + 4 x 3a
= a + 12a = 13a
và 13a luôn chia hết cho 13
vậy là với b = a x3 thì 10a + b chia hết cho 13 và a + 4b cũng chia hết cho 13
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1). Lấy (1) - 39b (luôn chia hết cho 13) dc 10a +b -> 10a + b chia hết cho 13. Ngược lại cũng tương tự.