1. giải bất phương trình : 3 | 2x - 1 | < 2x + 1
giải theo 2 cách nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
( x - 1 )( x + 2 ) > ( x - 1 )2 + 3
<=> x2 + x - 2 > x2 - 2x + 1 + 3
<=> x2 + x - x2 + 2x > 1 + 3 + 2
<=> 3x > 6 <=> x > 2
Vậy bpt có tập nghiệm { x | x > 2 }
x( 2x - 1 ) - 8 < ( 5 - 2x )( 1 - x )
<=> 2x2 - x - 8 < 2x2 - 7x + 5
<=> 2x2 - x - 2x2 + 7x < 5 + 8
<=> 6x < 13 <=> x < 13/6
Vậy bpt có tập nghiệm { x | x < 13/6 }
\(x^2-2x+3\left|x-1\right|< 3\)
\(-3< x-1< 3\)
\(-2< x< 4\)
\(x\in\left\{-1;0;1;2;3\right\}\)
Ta có: 1/(x-2) < 1/(3-2x)
<> 1/(x-2) - 1/(3-2x) < 0
<> 3-2x-x+2 < 0
<> -3x < -5
<> x > 5/3
K đúng cho mk nha pạn!
Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{2x^2}=b\end{cases}}\)
\(\Rightarrow a+\sqrt[3]{x^3+1}< b+\sqrt[3]{b^3+1}\)
Dễ thấy hàm số dạng \(f\left(t\right)=t+\sqrt[3]{t^3+1}\)đồng biến trên R nên
\(\Rightarrow a< b\)
\(\Leftrightarrow\sqrt[3]{x+1}< \sqrt[3]{2x^2}\)
\(\Leftrightarrow2x^2-x-1>0\)
\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -\frac{1}{2}\end{cases}}\)
Cách khác: Dùng liên hợp.
bpt <=> \(\left(\sqrt[3]{2x^2}-\sqrt[3]{x+1}\right)+\left(\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}\right)>0\)
<=> \(\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2}\right)^2+\sqrt[3]{2x^2}.\sqrt[3]{x+1}+\left(\sqrt[3]{x+1}\right)^2}\)
\(+\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2+1}\right)^2+\sqrt[3]{2x^2+1}.\sqrt[3]{x+2}+\left(\sqrt[3]{x+2}\right)^2}>0\)
<=> \(2x^2-x-1>0\)
3 | 2x - 1 | < 2x + 1 ( 1 )
- xét khoảng x < \(\frac{1}{2}\), ( 1 ) có dạng :
3 ( 1 - 2x ) < 2x + 1 \(\Leftrightarrow\)-8x < -2 \(\Leftrightarrow\)x > \(\frac{1}{4}\)
vậy nghiệm của BPT khoảng này là \(\frac{1}{4}\)< x < \(\frac{1}{2}\)
- xét khoảng x \(\ge\)\(\frac{1}{2}\), ( 1 ) có dạng :
3 ( 2x - 1 ) < 2x + 1 \(\Leftrightarrow\)4x < 4 \(\Leftrightarrow\)x < 1
vậy nghiệm của BPT khoảng này là \(\frac{1}{2}\)\(\le\)x < 1
tóm lại, nghiệm của BPT đã cho là \(\frac{1}{4}< x< 1\)
à quên, 2 cách nhỉ
3 | 2x - 1 | < 2x + 1
\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)>-\left(2x+1\right)\\3\left(2x-1\right)< 2x+1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}6x-3>-2x-1\\6x-3< 2x+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8x>2\\4x< 4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 1\end{cases}}\)\(\Leftrightarrow\frac{1}{4}< x< 1\)