K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

P= \(\frac{x}{y+\sqrt{2}}\)\(x\frac{\sqrt{2}-y}{2-y^2}\) do \(x^2\) +\(y^2\)=1  =>y^2<hoặc bằng 1 => -1<=y<=1  =>\(\sqrt{2}-y>=0\)

P<,= \(\frac{\sqrt{2}x}{2-1+x^2}\)=\(\frac{\sqrt{2}x}{x^2+1}\)\(-\)\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{2}}\)\(\frac{-x^2+2x-1}{x^2+1}+\frac{1}{\sqrt{2}}\)và bé hơn \(\frac{1}{\sqrt{2}}\)do \(\frac{-x^2+2x-1}{x^2+1}\)bé hơn 0 vậy GTLN của P là \(\frac{1}{\sqrt{2}}\)

đạt được tai x=1 và y=0

14 tháng 10 2017

x + y = 1

tim min

1/(x^2 + y^2) + 2/(xy) -4xy

26 tháng 3 2022

Ta có: \(4\ge2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

    \(\Rightarrow x+y\le2\)

Ta có: \(P=\sqrt{x\left(14x+10y\right)}+\sqrt{y\left(14y+10x\right)}\)

              \(=\sqrt{\dfrac{24x\left(14x+10y\right)}{24}}+\sqrt{\dfrac{24y\left(14y+10x\right)}{24}}\le\dfrac{\dfrac{24x+14x+10y}{2}}{\sqrt{24}}+\dfrac{\dfrac{24y+14y+10x}{2}}{\sqrt{24}}\)

\(\Leftrightarrow P\le\dfrac{24\left(x+y\right)}{2\sqrt{6}}\le\dfrac{24.2}{2\sqrt{6}}=4\sqrt{6}\)

Dấu "=" xảy ra ⇔ x = y = 1

6 tháng 3 2020

Ta có : \(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng vào bài toán có :

\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

Áp dụng BĐT Svacxo ta có :

\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)\(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\)\(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)

Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)

P/s : Dấu "=" không chắc lắm :))

7 tháng 3 2020

thanks bạn mình hiểu sương sương rồi:))