\(\frac{x^2}{y+1}+\frac{y^2}{x+1}\)\(\ge1\)với xy=1 và x,y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^3}{y+1}+\frac{y+1}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3\left(y+1\right)}{8\left(y+1\right)}}=\frac{3}{2}x\)
Tương tự: \(\frac{y^3}{x+1}+\frac{x+1}{4}+\frac{1}{2}\ge\frac{3}{2}y\)
Cộng vế với vế:
\(B+\frac{x+y+2}{4}+1\ge\frac{3}{2}\left(x+y\right)\)
\(\Rightarrow B\ge\frac{5}{4}\left(x+y\right)-\frac{3}{2}\ge\frac{5}{4}.2\sqrt{xy}-\frac{3}{2}=1\)
Dấu "=" xảy ra khi \(x=y=1\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Áp dụng bđt \(\frac{m^2}{a}+\frac{n^2}{b}+\frac{p^2}{c}\ge\frac{\left(m+n+p\right)^2}{a+b+c}\) (bạn tự chứng minh)
Được : \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
\(\Rightarrow\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge1\) (đpcm)
Ta có : \(\begin{cases}2yz\le y^2+z^2\\2zx\le z^2+x^2\\2xy\le x^2+y^2\end{cases}\)
\(VT\ge\frac{x^2}{x^2+y^2+z^2}+\frac{y^2}{x^2+y^2+z^2}+\frac{z^2}{x^2+y^2+z^2}=1\)
Đặt \(A=\frac{x}{y^4+2}+\frac{y}{z^42}+\frac{z}{x^4+2}\ge1\)
\(A=\frac{y^4}{x+2}+\frac{z^4}{y+2}+\frac{x^4}{z+2}\ge1\)
Còn lại thì bạn tính tổng nha! Lớn hơn hoặc bằng 1 là được :))
Ta có: \(\frac{x^2}{y+1}+\frac{\left(y+1\right)}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)
Tương tự với phân thức kia.Ta có:
\(VT=\frac{x^2}{y+1}+\frac{y^2}{x+1}=\left(\frac{x^2}{y+1}+\frac{y+1}{4}\right)+\left(\frac{y^2}{x+1}+\frac{x+1}{4}\right)-\left(\frac{x+y+2}{4}\right)\) (Áp dụng cái BĐT bên trên vào,ta có:)
\(\ge x+y-\frac{x+y+2}{4}=\frac{3\left(x+y\right)-2}{4}\ge\frac{3.2.\sqrt{xy}-2}{4}=\frac{6-2}{4}=1^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi x = y = 1
P/s: Đúng không ta?Em mới lớp 7 thôi ạ!