So sánh:
A=2010+1/2010-1 B=2010-1/2010-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thì mới nói nếu dấu chia trừ mũ là xong
ý mà không được vậy mũ ra âm 1 à
ồ được bằng 1/2010
Ta có :
\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)
\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)
Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)
~ Học tốt ~
Ta có:
2010.A=\(\frac{2010^{2012}+2010}{2010^{2012}+1}\)
2010.B=\(\frac{2010^{2011}+2010}{2010^{2011}+1}\)
2010.A có phần thừa với 1 là:\(\frac{2009}{2010^{2012}+1}\)
2010.B có phần thừa với 1 là:\(\frac{2009}{2010^{2011}+1}\)
Vì \(\frac{2009}{2010^{2012}+1}<\frac{2009}{2010^{2011}+1}\)
=>2010.A<2010.B
=>A<B
Vì B là phân số bé hơn 1 nên cộng cùng một số vào tử và mẫu của phân số đó thì giá trị của B sẽ tăng thêm, ta có:
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)
Vậy B < A
\(A=\frac{2010^{2011}+1+2009}{2010^{2012}+1+2009}=\frac{2010^{2011}+2010}{2010^{2012}+2010}=\frac{2010\left(2010^{2010}+1\right)}{2010\left(2010^{2011}+1\right)}\)\(=B\)
so sánh : cho A\(\frac{2010^{2011}+1}{2010^{2012}+1}\)
cho B =\(\frac{2010^{2010}+1}{2010^{2011}+1}\)
Ta có:
\(A=\frac{2010^{2011}+1}{2010^{2012}+1}\)
\(2010A=\frac{2010^{2012}+2010}{2010^{2012}+1}\)
\(2010A=1+\frac{2009}{2010^{2012}+1}\)
Lại có:
\(B=\frac{2010^{2010}+1}{2010^{2011}+1}\)
\(2010B=\frac{2010^{2011}+2010}{2010^{2011}+1}\)
\(2010B=1+\frac{2009}{2010^{2011}+1}\)
Vì \(1+\frac{2009}{2010^{2012}+1}< 1+\frac{2009}{2010^{2011}+1}\)
nên 2010A < 2010B
hay A < B
Vậy A < B
\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Ta có: \(20^{10}-1>20^{10}-3\)
\(\Rightarrow\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)
\(\Rightarrow1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)
\(\Rightarrow A< B\)
Vậy...
\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
\(\Rightarrow\frac{2}{20^{10}-1}>\frac{2}{20^{10}-3}\)
\(\Rightarrow A>B\)
\(#Louis\)