viết phương trình đường thẳng d đi qua gốc tọa độ và tạo với đường thẳng x-y+1=0 một góc 60o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Vì (d1)//y=2x-1 nên a=2
Vậy: (d1): y=2x+b
Thay x=0 và y=0 vào (d1), ta được:
b+0=0
hay b=0

Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)
\(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)
Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)

Gọi \(\left(a;b\right)\) là 1 vtpt của d
\(\overrightarrow{AC}=\left(5;-2\right)\Rightarrow\) đường thẳng AC nhận (2;5) là 1 vtpt
Do góc giữa d và AC bằng 45 độ
\(\Rightarrow cos45^0=\dfrac{1}{\sqrt{2}}=\dfrac{\left|2a+5b\right|}{\sqrt{2^2+5^2}.\sqrt{a^2+b^2}}\)
\(\Leftrightarrow29\left(a^2+b^2\right)=2\left(2a+5b\right)^2\)
\(\Leftrightarrow21a^2-40ab-21b^2=0\)
\(\Leftrightarrow\left(3a-7b\right)\left(7a+3b\right)=0\)
Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(7;3\right)\\\left(3;-7\right)\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}7\left(x-3\right)+3\left(y-5\right)=0\\3\left(x-3\right)-7\left(y-5\right)=0\end{matrix}\right.\)

Giao của d với trục Ox là điểm A(3;0). Phép tịnh tiến phải tìm có vectơ tịnh tiến v → = O A → = ( − 3 ; 0 ) . Đường thẳng d' song song với d và đi qua gốc tọa độ nên nó có phương trình 3x – y = 0.
\(d_1\) : \(x-y+1=0\Rightarrow\overrightarrow{n_{d1}}=\left(1;-1\right)\)
Gọi vtecto pháp tuyến của d là \(\overrightarrow{n_d}=\left(a;b\right)\)
\(cos60^0=\frac{\left|a-b\right|}{\sqrt{1^2+1^2}\sqrt{a^2+b^2}}=\frac{1}{2}\)
\(\Leftrightarrow2\left(a-b\right)^2=a^2+b^2\Leftrightarrow a^2-4ab+b^2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=\left(2+\sqrt{3}\right)b\\a=\left(2-\sqrt{3}\right)b\end{matrix}\right.\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;2+\sqrt{3}\right)\\\left(a;b\right)=\left(1;2-\sqrt{3}\right)\end{matrix}\right.\)
Phương trình d: \(\left[{}\begin{matrix}x+\left(2+\sqrt{3}\right)y=0\\x+\left(2-\sqrt{3}\right)y=0\end{matrix}\right.\)