K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

CÁCH 1:

\(x^2-4x+1=0\)

\(\Leftrightarrow x^2-4x+\left(1.2^2-3\right)=0\)           ( 1 x^2 - 3 = 1 nha em )

\(\Leftrightarrow x^2-2.2.x+1.2^2-3=0\)

\(\Leftrightarrow x^2-2.2.x+2^2-3=0\)

\(\Leftrightarrow\left(x^2-2.2.x+2^2\right)-3=0\)

\(\Leftrightarrow\left(x-2\right)^2-3=0\)             ( cái này là hằng đẳng thức số 2 )

\(\Leftrightarrow\left(x-2\right)^2=3\)

\(\Leftrightarrow x-2=\pm\sqrt{3}\)

\(\Leftrightarrow\orbr{\begin{cases}x_1-2=\sqrt{3}\\x_2-2=-\sqrt{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=2+\sqrt{3}\\x_2=2-\sqrt{3}\end{cases}}\)

Vậy: x1 = 2+ v3   ; x2 = 2 - v3 

CÁCH 2 :

\(x^2-4x+1=0\)

\(\left(a=1;b=-4;c=1\right)\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.1=12>0\)

\(\sqrt{\Delta}=\sqrt{12}=2\sqrt{3}\)

=> Phương trình có hai nghiệm phân biệt

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-4\right)+2\sqrt{3}}{2.1}=2+\sqrt{3}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-4\right)-2\sqrt{3}}{2.1}=2-\sqrt{3}\)

Vậy: x1 = 2+ v3  ; x2 = 2-v3 

Học tốt !!

\(F\left(x\right)=x^2-4x+1\)

\(F\left(x\right)=\left(x^2-2x.2+2^2\right)-4+1\)

\(F\left(x\right)=\left(x-2\right)^2-3=0\)

\(F\left(x\right)=\left(x-2\right)^2=3\)

\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\)

Vậy...

f(x)=0

=>x=1/2

g(1/2)=0

=>1-1/2a+1=0

=>2-1/2a=0

=>a=4

25 tháng 3 2019

a) f(-1)=(-1)4-2(-1)2+4(-1)+8(-1)3

          =1-2+(-4)+(-8)

          =-9

b)H(x)=(x4-2x2+4x+8x3)-(6+8x3-3x2+4x)

          =x4-2x2+4x+8x3-6-8x3+3x2+4x

          =x4+x2+8x-6

25 tháng 3 2019

t là nốt câu c):

Đa thức H(x) có bậc là 4 nên có nhiều nhất 4 nghiệm.

a: \(f\left(-2\right)=2\cdot\left(-2\right)^3+\left(-2\right)^2-4\cdot\left(-2\right)-2=-6\)

\(f\left(-1\right)=2\cdot\left(-1\right)^3+\left(-1\right)^2-4\cdot\left(-1\right)-2=-2+1+4-2=1\)

\(f\left(-\dfrac{1}{2}\right)=2\cdot\dfrac{-1}{8}+\dfrac{1}{4}-4\cdot\dfrac{-1}{2}-2=\dfrac{-1}{4}+\dfrac{1}{4}+2-2=0\)

\(f\left(1\right)=2+1-4-2=-3\)

\(f\left(2\right)=2\cdot2^3+2^2-4\cdot2-2=16+4-8-2=10\)

b: Vì f(-1/2)=0 nên -1/2 là một nghiệm của đa thức f(x)

13 tháng 4 2023

Bài 1

Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)

\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm

VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)

\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)

\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)

Ra hai kết quả khác nhau 

\(\Rightarrow x=-4\) không là nghiệm

Bài 2

\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow\) phương trình vô nghiệm 

DD
23 tháng 5 2021

1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

Với \(x=1\)\(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).

Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).

DD
23 tháng 5 2021

2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)

Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).

Ta có hệ: 

\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).

21 tháng 4 2022

a) \(4x+12=0\)

\(4x=-12\\ x=-3\)

Vậy \(x=-3\) là nghiệm của đa thức.

b) \(5x-\dfrac{1}{6}=0\)

\(5x=\dfrac{1}{6}\\ x=\dfrac{1}{30}\)

Vậy \(x=\dfrac{1}{30}\) là nghiệm đa thức.

c) \(-6-2x=0\)

\(2x=-6\\ x=-3\)

Vậy \(x=-3\) là nghiệm của đa thức.

d) \(x^2+4x=0\)

\(x\left(x+4\right)=0\)

TH1: \(x=0\)

TH2: \(x+4=0\) hay \(x=-4\)

Vậy các nghiệm của đa thức là \(x=0,x=-4\).

e) \(x^3-4x=0\)

\(x\left(x^2-4\right)=0\)

TH1: \(x=0\)

TH2: \(x^2-4=0\), suy ra \(x^2=4\), do đó \(x=2\) hoặc \(x=-2\)

Vậy các nghiệm của đa thức là \(x=0,x=2,x=-2\)

f) \(x^5-27x^2=0\)

\(x^2\left(x^3-27\right)=0\)

Th1: \(x^2=0\) hay \(x=0\)

TH2: \(x^3-27=0\), suy ra \(x^3=27\), hay \(x=3\)

Vậy \(x=0,x=3\) là các nghiệm của đa thức.

21 tháng 4 2022

\(\text{a)Đặt 4x+12=0}\)

\(\Rightarrow4x=0-12=-12\)

\(\Rightarrow x=\left(-12\right):4=-3\)

\(\text{Vậy đa thức 4x+12 có nghiệm là x=-3}\)

\(\text{b)Đặt 5x-}\dfrac{1}{6}=0\)

\(\Rightarrow5x=0+\dfrac{1}{6}=\dfrac{1}{6}\)

\(\Rightarrow x=\dfrac{1}{6}:5=\dfrac{1}{30}\)

\(\text{Vậy đa thức 5x-}\dfrac{1}{6}\text{ có nghiệm là }x=\dfrac{1}{30}\)

\(\text{c)Đặt (-6)-2x=0}\)

\(\Rightarrow2x=\left(-6\right)-0=-6\)

\(\Rightarrow2x=\left(-6\right):2=-3\)

\(\text{Vậy đa thức (-6)-2x có nghiệm là x=-3}\)

\(\text{d)Đặt }x^2+4x=0\)

\(\Rightarrow x\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+4=0\Rightarrow x=0-4=-4\end{matrix}\right.\)

\(\text{Vậy đa thức }x^2+4x\text{ có 2 nghiệm là }x=0;x=-4\)

\(\text{e)Đặt }x^3-4x=0\)

\(\Rightarrow x\left(x^2-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\Rightarrow x^2=0+4=4\Rightarrow x=\pm2\end{matrix}\right.\)

\(\text{Vậy đa thức }x^3-4x\text{ có 3 nghiệm là }x=0;x=2;x=-2\)

\(\text{f)Đặt }x^5-27x^2=0\)

\(\Rightarrow x^2\left(x^3-27\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2=0\Rightarrow x=0\\x^3-27=0\Rightarrow x^3=0+27=27\Rightarrow x=3\end{matrix}\right.\)

\(\text{Vậy đa thức }x^5-27x^2\text{ có 2 nghiệm là }x=0;x=3\)

a: \(f\left(-2\right)=5\cdot4-8-8=4\)

b: \(f\left(x\right)+g\left(x\right)=6x^2+2x-8\)

c: Đặt G(x)=0

=>x(x-2)=0

=>x=0 hoặc x=2

24 tháng 5 2021

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)