K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

\(B=\left[\frac{4}{11}\cdot\left(\frac{1}{25}\right)^0+\frac{7}{22}\cdot2\right]^{2010}-\left(\frac{1}{2^2}:\frac{8^2}{4^4}\right)^{2009}\)

\(B=\left[\frac{4}{11}\cdot1+\frac{7}{22}\cdot2\right]^{2010}-\left(\frac{1}{2^2}:\frac{\left(2^3\right)^2}{\left(2^2\right)^4}\right)^{2009}\)

\(B=\left[\frac{4}{11}+\frac{7}{11}\right]^{2010}-\left(\frac{1}{2^2}:\frac{2^6}{2^8}\right)^{2009}\)

\(B=1^{2010}-\left(\frac{1}{2^2}\cdot\frac{2^8}{2^6}\right)^{2009}\)

\(B=1-1^{2009}=1-1=0\)

12 tháng 2 2018

\(A=\left[\dfrac{4}{11}.\left(\dfrac{1}{25}\right)^0+\dfrac{7}{22}.2\right]^{2010}-\left(\dfrac{1}{2^2}:\dfrac{8^2}{4^2}\right)^{2009}\)

....=.\(\left(\dfrac{4}{11}.1+\dfrac{7}{11}\right)^{2010}-\left(\dfrac{1}{2^2}.\dfrac{4^2}{8^2}\right)^{2009}\)

.....\(=\left(\dfrac{4}{11}+\dfrac{7}{11}\right)^{2010}-0\)

....\(=1-0=1\)

16 tháng 7 2018

\(a,A=\left[\frac{4}{11}.\left(\frac{1}{25}\right)^0+\frac{7}{22}.2\right]^{2010}-\left(\frac{1}{2^2}:\frac{8^2}{4^4}\right)^{2009}\)

\(A=\left(\frac{4}{11}.1+\frac{7}{11}\right)^{2010}-\left(\frac{1}{2^2}.2^2\right)^{2009}\)

\(A=1-1=0\)

\(b,B=\frac{0,8:\left(\frac{4}{5}.1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right).2\frac{2}{17}}+\left(1,2.0,5\right):\frac{4}{5}\)

\(B=\frac{0,8:1}{\frac{3}{5}}+\frac{\left(1\right):\frac{4}{7}}{\left(\frac{59}{9}-\frac{13}{4}\right).36}\)

\(B=0,8.\frac{5}{3}+\frac{\frac{7}{4}}{\frac{119}{36}.36}\)

\(B=\frac{4}{3}+\frac{7}{4}.\frac{1}{119}\)

\(B=\frac{4}{3}+\frac{1}{68}=\frac{275}{204}\)

19 tháng 6 2016

Bài 1:

a)12,5 x (-5/7) + 1,5 x (-5/7)

=-5/7*(12,5+1,5)

=-5/7*14

=-10

b)(-1/4) x (6|2/11) + 3|9/11 x (-1/4)

=-1/4*(68/11+42/11)

=-1/4*10

=-5/2

c tương tự

d)\(\frac{9^8\cdot4^3}{27^4\cdot6^5}=\frac{\left(3^2\right)^8\cdot\left(2^2\right)^3}{\left(3^3\right)^4\cdot\left(2\cdot3\right)^5}=\frac{3^{16}\cdot2^6}{3^{12}\cdot2^5\cdot3^5}=\frac{3^{16}\cdot2^5\cdot2}{3^{16}\cdot3^1\cdot2^5}=\frac{2}{3}\)

Bài 2:

a)Ta có:

2800=(28)100=256100

8200=(82)100=64100

Vì 256100>64100 =>2800>8200

b)Ta có:

1245=(123)15=172815

Vì 62515<172815 =>62515<1245

19 tháng 6 2016

a) -5/7x(12,5+1,5)=-10

b) -1/4x (6I2/11+3I9/11) = -1/4x 10=-5/2

c) (-7/5 + -3/8 + -3/5+5/8): 2009/2010 = -7/4:2009/2010=-1005/574

d)3^16x 4^3/3^12x 6^5=3^4x4^3x6^5=......

bài 2)

2^800=2^4x200= 15^200> 8^200

=> 2^800>8^200

B) quên cách làm

19 tháng 6 2016

a,12,5x(-5/7)+1,5x(-5/7)

=-125/14+-15/14

=-10

2,2mu800>8 mu 200

6254 lon hon 12

3 tháng 7 2018

1) \(A=\frac{7}{10\times11}+\frac{7}{11\times12}+\frac{7}{12\times13}+...+\frac{7}{69\times70}\)

    \(A=7\times\left(\frac{1}{10\times11}+\frac{1}{11\times12}+\frac{1}{12\times13}+...+\frac{1}{69\times70}\right)\)

    \(A=7\times\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)

    \(A=7\times\left(\frac{1}{10}-\frac{1}{70}\right)\)

   \(A=7\times\frac{3}{35}\)

   \(A=\frac{3}{5}\)

2) \(B=\frac{1}{25\times27}+\frac{1}{27\times29}+\frac{1}{29\times31}+...+\frac{1}{73\times75}\)

    \(B=\frac{1}{2}\times\left(\frac{2}{25\times27}+\frac{2}{27\times29}+\frac{2}{29\times31}+...+\frac{2}{73\times75}\right)\).

    \(B=\frac{1}{2}\times\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)

    \(B=\frac{1}{2}\times\left(\frac{1}{25}-\frac{1}{75}\right)\)

    \(B=\frac{1}{2}\times\frac{2}{75}\)

    \(B=\frac{1}{75}\)

3) \(C=\frac{4}{2\times4}+\frac{4}{4\times6}+\frac{4}{6\times8}+...+\frac{4}{2008\times2010}\)

    \(C=\frac{4}{2}\times\left(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+...+\frac{2}{2008\times2010}\right)\)

    \(C=2\times\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

    \(C=2\times\left(\frac{1}{2}-\frac{1}{2010}\right)\)

    \(C=2\times\frac{502}{1005}\)

    \(C=\frac{1004}{1005}\)

_Chúc bạn học tốt_