Chứng minh rằng : x2+2y2+2xy+6x+2y+2027≥2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2y^2-2xy+x-2y+1=0\)
\(4x^2+8y^2-8xy+4x-8y+4=0\)
\(4x^2-4x\left(2y-1\right)+\left(2y-1\right)^2+8y^2-8y+4-\left(2y-1\right)^2=0\)
\(\left(2x-2y+1\right)^2+\left(4y^2-4y+1\right)+3=0\)
\(\left(2x-2y+1\right)^2+\left(2y-1\right)^2+3=0\) ( vô lí)
=> KL...........
Khởi động nhẹ nhàng thôi:v
\(a^2+b^2+c^2\ge\dfrac{3}{4}\)
\(\Rightarrow a^2+b^2+c^2-a-b-c\ge\dfrac{3}{4}-\dfrac{3}{2}=-\dfrac{3}{4}\)
\(\Rightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)\ge0\)
\(\Rightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2\ge0\) (đúng)
\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)
a) C1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy
Ta có : a2 + b2 ≥ 2ab ( 1)
b2 + c2 ≥ 2bc ( 2)
c2 + a2 ≥ 2ac ( 3)
Từ ( 1 ; 2 ; 3) ⇒ 2( a2 + b2 + c2) ≥ 2( ab + ab + ac)
⇔ 3( a2 + b2 + c2) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)
C2. Áp dụng BĐT Bunhiacopxki , ta có :
( a2 + b2 + c2)( 12 + 12 + 12) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)
\(x^2-2xy+2y^2+2y+5=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x-y\right)^2+\left(y+1\right)^2+4\)
Do \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4>0\) ; \(\forall x;y\)
Cho các số x khác 2y thỏa mãn x2- 2xy - 2y2 - 3x +6y=0
Tính giá trị biểu thức A= x2+ 2xy _y2 - 2x- 2y
Lời giải:
a. $x^2+y^2+4y+13-6x$
$=(x^2-6x+9)+(y^2+4y+4)$
$=(x-3)^2+(y+2)^2$
b.
$4x^2-4xy+1+2y^2-2y$
$=(4x^2-4xy+y^2)+(y^2-2y+1)$
$=(2x-y)^2+(y-1)^2$
c.
$x^2-2xy+2y^2+2y+1$
$=(x^2-2xy+y^2)+(y^2+2y+1)$
$=(x-y)^2+(y+1)^2$
a. \(x^2+y^2+4y+12-6x=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)=\left(x-3\right)^2+\left(y+2\right)^2\)b. \(4x^2-4xy+1+2y^2-2y=\left(4x^2-4xy+y^2\right)+\left(y^2-2y+1\right)=\left(2x-y\right)^2+\left(y-1\right)^2\)c. \(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)
Lời giải:
$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$
$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$
$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$
Vậy $P_{\min}=2018$
Giá trị này đạt tại $x+y-3=y-1=0$
$\Leftrightarrow y=1; x=2$
\(P=x^2+2y^2+2xy-6x-8y+2027\\ =\left(x^2+y^2+9+2xy-6x-6x\right)+\left(y^2-2y+1\right)+2017\\ =\left(x+y-3\right)^2+\left(y-1\right)^2+2017\)
Do \(\left(x+y-3\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x+y-3\right)^2+\left(y-1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+y-3\right)^2+\left(y-1\right)^2+2017\ge2017\forall x;y\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x+y-3\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(P_{\left(Min\right)}=2017\) khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
P = x2+2y2 +2xy-6x-8y+2027
=x2+2xy+y2+y2-6x-6y-2y+1+9+2017
=(x2+2xy+y2)-(6x+6y)+9+(y2-2y+1)+2017
=(x+y)2-6(x+y)+9+(y-1)2+2017
=[(x+y)2-6(x+y)+9]+(y-1)2 +2017
=(x+y-3)2+(y-1)2+2017
Do (x+y-3)2 \(\ge0\forall x\)
(y-1)2 \(\ge0\forall x\)
=>\(\left(x+y-3\right)^2+\left(y-1\right)^2\ge0\)
=>\(\left(x+y-3\right)^2+\left(y-1\right)^2+2017\ge2017\)=> P\(\ge2017\)
Min P=2017 khi
y-1=0
=> y=1
x+y-3=0
=>x+1-3=0
=> x=2
Vậy GTNN của P=2017 khi y=1 và x=2
\(x^2+2y^2+2xy+6x+2y+2027\)
\(=x^2+2x\left(y+3\right)+\left(y+3\right)^2+\left(y^2-4y+4\right)+2014\)
\(=\left(x+y+3\right)^2+\left(y-2\right)^2+2014\)
Ta có: \(\left\{{}\begin{matrix}\left(x+y+3\right)^2\ge0\forall x;y\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)\(\Leftrightarrow\)\(\Rightarrow\left(x+y+3\right)^2+\left(y-2\right)^2+2014\ge2014\)\(\forall x;y\)
Dấu " = " xảy ra < = > \(\left\{{}\begin{matrix}\left(x+y+3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-5\end{matrix}\right.\)