Cho x,y,z > 0 và x + y + z = 4
Cmr: \(x+y\ge xyz\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x + y + z = 4 suy ra z = 4 - y -x
Ta có x + y >= 4xy -x^2y - yx^2
Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:
A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)
\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)
Dấu "=" xảy ra khi x = y = z = 1
\(x^3+1+1\ge3\sqrt[3]{x^3}=3x\); \(y^3+1+1\ge3y\); \(z^3+1+1\ge3z\)
\(\Rightarrow x^3+y^3+z^3+6\ge3\left(x+y+z\right)\ge x+y+z+2.3\sqrt[3]{xyz}=x+y+z+6\)
\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)
Dấu "=" xảy ra khi \(x=y=z=1\)
ấy chết,sửa: \(\sqrt{xyz}\) thành \(\sqrt[3]{xyz}\). Em cứ nhầm cái này
Em thử nha, ko chắc đâu;( em thấy nó giống giống lời giải một bài toán nào đó trên tạp chí toán tuổi thơ mà em đã đọc qua lúc trước: chỗ khúc cuối xét \(t_1>t_2\ge3\) ấy ạ. Nên bắt chước lại chỗ đó. tạm thời em chưa nghĩ ra lời nào khác.
Từ đề bài ta có \(1=xyz\le\frac{\left(x+y+z\right)^3}{27}\Rightarrow t=x+y+z\ge3\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{t^2}{t+3}\). Cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\left(t\ge3\right)\Leftrightarrow f\left(t\right)=2t^2-3t-9\ge0\) (1)
Xét \(t_1>t_2\ge3\). Khi đó \(f\left(t_1\right)-f\left(t_2\right)=2\left(t_1^2-t_2^2\right)-3\left(t_1-t_2\right)\)
\(=2\left(t_1-t_2\right)\left(t_1+t_2\right)-3\left(t_1-t_2\right)\)
\(=\left(t_1-t_2\right)\left(2t_1+2t_2-3\right)>\left(t_1-t_2\right)\left(2.3+2.3-3\right)=9\left(t_1-t_2\right)>0\) (do \(t_1>t_2\ge3\))
Do đó khi t tăng thì hàm số f(t) tăng, tương tự t giảm thì f(t) giảm với \(t\ge3\). Do đó f(t) đạt giá trị nhỏ nhất khi t = 3.
Khi đó f(t) = 0. Do đó (1) đúng hay ta có đpcm.
Ta có:
\(xyz\ge x+y+z+2\ge2+3\sqrt[3]{xyz}\)
\(\Leftrightarrow\frac{x+y+z}{3}\ge\sqrt[3]{xyz}\ge2\)
\(\Leftrightarrow x+y+z\ge6\)
Cho x, y, z > 0 và xyz=1. CMR :
\(\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z}+\dfrac{z^2}{1+z}\ge\dfrac{3}{2}\)
Đề sai nhé, \(\dfrac{z^2}{x+1}\) mới đúng nha
\(\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3}\left(\text{Svácxơ}\right)\)
\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Ta có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow x+y+z+3\le2\left(x+y+z\right)\)
\(\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{\left(x+y\right)z}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{4}{\frac{4^2}{4}}=1\)
\(\Rightarrow x+y\ge xyz\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=1;z=2\)