Chứng minh rằng
\(\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+...+\frac{1}{43}+\frac{1}{44}>\frac{5}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dài lắm
\(A=\frac{\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}}{\frac{1}{1.26}+\frac{1}{2.27}+\frac{1}{3.28}+...+\frac{1}{100.125}}\)
\(A=\frac{\frac{1}{100}.\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{25}-\frac{1}{125}\right)}{\frac{1}{25}.\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+\frac{1}{3}-\frac{1}{28}+...+\frac{1}{100}-\frac{1}{125}\right)}\)
\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-\frac{1}{28}-...-\frac{1}{125}\right)}\)
\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+...+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-...-\frac{1}{100}-\frac{1}{101}-...-\frac{1}{125}\right)}\)
\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}\)
\(A=\frac{\left(\frac{1}{100}\right)}{\left(\frac{1}{25}\right)}=\frac{1}{4}\)
\(B=\frac{\frac{16}{9}-\frac{16}{127}+\frac{16}{2017}}{\frac{5}{2017}+\frac{5}{9}-\frac{5}{127}}-\frac{\frac{6000}{43}-\frac{6000}{257}-\frac{125}{42}}{\frac{2000}{43}-\frac{250}{252}-\frac{2000}{257}}\)
\(B=\frac{\frac{16}{9}-\frac{16}{127}+\frac{16}{2017}}{\frac{5}{2017}+\frac{5}{9}-\frac{5}{127}}-\frac{\frac{6000}{43}-\frac{6000}{257}-\frac{6000}{2016}}{\frac{2000}{43}-\frac{2000}{2016}-\frac{2000}{257}}\)
\(B=\frac{16.\left(\frac{1}{9}-\frac{1}{127}+\frac{1}{2017}\right)}{5.\left(\frac{1}{2017}+\frac{1}{9}-\frac{1}{127}\right)}-\frac{6000.\left(\frac{1}{43}-\frac{1}{257}-\frac{1}{2016}\right)}{2000.\left(\frac{1}{43}-\frac{1}{2016}-\frac{1}{257}\right)}\)
\(B=\frac{16}{5}-3=\frac{1}{5}\)
Đặt \(C=\frac{1}{2007^2}+\frac{1}{2006^2}+\frac{1}{2005^2}+...+\frac{1}{7^2}+\frac{1}{6^2}+\frac{1}{5^2}\)
\(C=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2005^2}+\frac{1}{2006^2}+\frac{1}{2007^2}\)
\(C< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2004.2005}+\frac{1}{2005.2006}+\frac{1}{2006.2007}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2006}+\frac{1}{2006}-\frac{1}{2007}\)
\(=\frac{1}{4}-\frac{1}{2017}\left(đpcm\right)\)
\(C>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{2005.2006}+\frac{1}{2006.2007}+\frac{1}{2007.2008}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2007}+\frac{1}{2007}-\frac{1}{2008}\)
\(=\frac{1}{5}-\frac{1}{2008}\left(đpcm\right)\)
Vậy \(A>\frac{1}{2007^2}+\frac{1}{2006^2}+\frac{1}{2005^2}+...+\frac{1}{7^2}+\frac{1}{6^2}+\frac{1}{5^2}>B\)
Số lượng phân số của dãy số trên là:
(44-15):1+1=30 (phân số)
Ta chia dãy phân số thành 2 cặp. Mỗi cặp có 15 phân số
Ta có: 1/15+1/16+1/17+...+1/44>5/6
Lại có: 1/30<1/15;1/30<1/16;...;1/30<1/29
1/45<1/30;1/45<1/31;...;1/45<1/44
=> 1/30.15+1/45.15 < 1/15+1/16+1/17+...+1/44
=> 15.(1/30+1/45)< 1/15+1/16+1/17+...+1/44
=> 15.1/18< 1/15+1/16+1/17+...+1/44
=> 5/6 < 1/15+1/16+1/17+...+1/44 (đpcm)
A> 1/29+1/29+......1/29+1/44+1/44.....+1/44
A> 15 x 1/29 + 15 x 1/44
Suy ra: (dựa vào tính chất hai phân số có cùng tử số phân số nào có mẫu số lớn hơn thì phân số đó nhỏ hơn)
A> 15 x 1/30 +15 x 1/45
A>1/2 +1/3
A> 5/6
Nhớ nhé
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{1454}{323}+\frac{35}{43}+6\)
\(=5,...+6\)
\(=11,...\)
\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
\(VayA=\sqrt{3}-2\)
Ta có:
\(\frac{1}{12}>\frac{1}{20}\)
\(\frac{1}{13}>\frac{1}{20}\)
\(\frac{1}{14}>\frac{1}{20}\)
......
\(\frac{1}{19}>\frac{1}{20}\)
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\)\(>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
\(=\frac{8}{20}=\frac{2}{5}>\frac{1}{3}\)
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}>\frac{1}{3}\)
\(A=\left(\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+...+\frac{1}{29}\right)+\left(\frac{1}{30}+\frac{1}{31}+\frac{1}{32}+...+\frac{1}{44}\right)\)
\(\frac{1}{15}>\frac{1}{30};\frac{1}{16}>\frac{1}{30};....;\frac{1}{29}>\frac{1}{30}\)
\(\frac{1}{30}>\frac{1}{45};\frac{1}{31}>\frac{1}{45};\frac{1}{32}>\frac{1}{45};...;\frac{1}{44}>\frac{1}{45}\)
Mà mỗi nhóm có 15 số hạng:
\(\Rightarrow A>\frac{15.1}{30}+\frac{15.1}{45}\)
\(A>\frac{5}{6}\)
Học tốt nhé bạn!
\(A=\left(\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+...+\frac{1}{29}\right)+\left(\frac{1}{30}+\frac{1}{31}+\frac{1}{32}+...+\frac{1}{44}\right)\)
\(\frac{1}{15}>\frac{1}{30};\frac{1}{16}>\frac{1}{30};....;\frac{1}{29}>\frac{1}{30}\)
\(\frac{1}{30}>\frac{1}{45};\frac{1}{31}>\frac{1}{45};\frac{1}{32}>\frac{1}{45};...;\frac{1}{44}>\frac{1}{45}\)
Mà mỗi nhóm có 15 số hạng:
\(\Rightarrow A>\frac{15.1}{30}+\frac{15.1}{45}\)
\(A>\frac{5}{6}\)
Học tốt nhé bạn!