K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

\(3^{x+2}-3^x=162\)

\(3^x.3^2-3^x=162\)

\(3^x\times\left(9-1\right)=162\)

\(3^x\times8=162\)

\(3^x=162:8\)

\(3^x=20,25\)

18 tháng 1 2017

xuy ra x,y bang

x+3=y.(x+2) Ta co: 

x,y=x,y thui wa deeeeeeeeeeeeeee.................

18 tháng 1 2017

x = -1 và y = -2 ;   x = -3 và y = 0                   Cách giải chuyển vế qua rooid tách x+3 thàng x+2+1 rồi sẽ có  (x+2)(y+1) = -1     rồi phan tích ước của -1 ra và giải theo từng trường hợp 

\(3^{x-1}+5.3^{x-1}=162\)

\(\Rightarrow3^{x-1}\left(5+1\right)=162\)

\(\Rightarrow3^{x-1}.6=162\)

\(\Rightarrow3^{x-1}=27\)

\(\Rightarrow3^{x-1}=3^3\)

\(\Rightarrow x-1=3\)

\(\Rightarrow x=4\)

12 tháng 8 2016

\(3^{x-1}+5.3^{x-1}=162\Rightarrow3^{x-1}\left(1+5\right)=162\Rightarrow3^{x-1}.6=162\)

\(\Rightarrow3^{x-1}=162:6\Rightarrow3^{x-1}=27\Rightarrow x-1=3\Rightarrow x=4\)

31 tháng 7 2023

\(\left(x+\dfrac{1}{3}\right)\times\dfrac{9}{14}\times\dfrac{7}{3}-\dfrac{1}{3}=1:\dfrac{9}{5}\\ \Rightarrow\left(x+\dfrac{1}{3}\right)\times\dfrac{3}{2}-\dfrac{1}{3}=\dfrac{5}{9}\\ \Rightarrow\left(x+\dfrac{1}{3}\right)\times\dfrac{3}{2}=\dfrac{5}{9}+\dfrac{1}{3}\\ \Rightarrow\left(x+\dfrac{1}{3}\right)\times\dfrac{3}{2}=\dfrac{8}{9}\\ \Rightarrow x+\dfrac{1}{3}=\dfrac{8}{9}:\dfrac{3}{2}\\ \Rightarrow x+\dfrac{1}{3}=\dfrac{16}{27}\\ \Rightarrow x=\dfrac{16}{27}-\dfrac{1}{3}\\ \Rightarrow x=\dfrac{7}{27}\)

8 tháng 10 2021

\(=\left(x^3-2x^2+x+2x^2-4x+2-2x+7\right):\left(x^2-2x+1\right)\\ =\left[\left(x^2-2x+1\right)\left(x+2\right)-2x+7\right]:\left(x^2-2x+1\right)\\ =x+2\left(dư:-2x+7\right)\)

7 tháng 3 2016

(x-2)(x+2/3)>0

<=>x-2 và x+2/3 cùng dấu

+)\(\int^{x-2>0}_{x+\frac{2}{3}>0}\Rightarrow\int^{x>2}_{x>-\frac{2}{3}}\Rightarrow x>2\left(1\right)\)

+)\(\int^{x-2<0}_{x+\frac{2}{3}<0}\Rightarrow\int^{x<2}_{x<-\frac{2}{3}}\Rightarrow x<-\frac{2}{3}\left(2\right)\)

từ (1);(2)=>x>2 hoặc x<-2/3 thì (x-2)(x+2/3)>0

14 tháng 7 2021

x.x2.x3...x99 phải bằng bao nhiêu thì mới làm đc chứ 

Thế này đố ai làm đc

14 tháng 7 2021

ko  có bằng bao nhiêu cả, đề nâng cao mà có = thì mik ko cần hỏi cũng bt

8 tháng 5 2018

a, | x - 3/4 | = 1/2

=>\(\orbr{\begin{cases}x-\frac{3}{4}=\frac{1}{2}\\x-\frac{3}{4}=-\frac{1}{2}\end{cases}}\)

=>\(\orbr{\begin{cases}x=\frac{1}{2}+\frac{3}{4}\\x=-\frac{1}{2}+\frac{3}{4}\end{cases}}\)

=>\(\orbr{\begin{cases}x=\frac{2}{4}+\frac{3}{4}\\x=-\frac{2}{4}+\frac{3}{4}\end{cases}}\)

=>\(\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{1}{4}\end{cases}}\)

Vậy....

8 tháng 5 2018

a) \(|x-\frac{3}{4}|=\frac{1}{2}\)

\(< =>\orbr{\begin{cases}x-\frac{3}{4}=\frac{1}{2}\\x-\frac{3}{4}=-\frac{1}{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{1}{2}+\frac{3}{4}\\x=-\frac{1}{2}+\frac{3}{4}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{1}{4}\end{cases}}\)

Vay : x = 5/4 hoặc x =  1/4

b)\(saide\)

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)