\(D=-\sqrt{xy}\)
Tim Min D khi biết \(\sqrt{x}+\sqrt{y}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Với x , y > 0 , áp dụng BĐT cauchy ta có :
+) \(\dfrac{x+y}{\sqrt{xy}}+\dfrac{4\sqrt{xy}}{x+y}\ge2\sqrt{\dfrac{\left(x+y\right)4\sqrt{xy}}{\sqrt{xy}\left(x+y\right)}}=4\) (1)
+) \(x+y\ge2\sqrt{xy}>0\) \(\Leftrightarrow\) \(\dfrac{1}{x+y}\le\dfrac{1}{2\sqrt{xy}}\)
\(\Leftrightarrow\) \(\dfrac{-3\sqrt{xy}}{x+y}\ge\dfrac{-3\sqrt{xy}}{2\sqrt{xy}}=\dfrac{-3}{2}\) (2)
* Từ (1) và (2)
\(\Rightarrow\) \(D\ge4-\dfrac{3}{2}=\dfrac{5}{2}\) . Dấu '' = '' xra khi x = y
ta có : \(\dfrac{\sqrt{x}+\sqrt{y}}{2}\ge\sqrt{\sqrt{xy}}\) \(\Leftrightarrow\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{4}\ge\sqrt{xy}\)
\(\Leftrightarrow\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)^2}{4}\le-\sqrt{xy}\) \(\Leftrightarrow-\sqrt{xy}\ge\dfrac{-\left(4\right)^2}{4}=-4\)
vậy min của \(-\sqrt{xy}\) là \(-4\) dấu "=" xảy ra khi \(\sqrt{x}=\sqrt{y}=2\Leftrightarrow x=y=4\)
a) \(A=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)
\(A=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)
\(A=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
b) \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)
\(B=\dfrac{\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
c) \(C=\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)
\(C=\dfrac{-\left(2a-3\sqrt{a}+1\right)}{\left(2\sqrt{a}\right)^2-2\sqrt{a}\cdot2\cdot1+1^2}\)
\(C=\dfrac{-\left(\sqrt{a}-1\right)\left(2\sqrt{a}-1\right)}{\left(2\sqrt{a}-1\right)^2}\)
\(C=\dfrac{-\sqrt{a}+1}{2\sqrt{a}-1}\)
d) \(D=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
\(D=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}\)
\(D=\sqrt{a}+2-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(D=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)\)
\(D=0\)
+) \(x+y+xy=8\Leftrightarrow\left(x+1\right)\left(y+1\right)=9\)
+) Đặt: \(a=\sqrt{x+1};b=\sqrt{y+1}\)
+) \(P=\frac{\sqrt{x+1}+\sqrt{y+1}}{\left(x+1\right)\left(y+1\right)-\left(x+1\right)-\left(y+1\right)+2}=\frac{a+b}{11-a^2-b^2}\)
\(\ge\frac{2\sqrt{ab}}{11-2ab}=\frac{2\sqrt{3}}{11-2\cdot3}=\frac{2\sqrt{3}}{5}\)
Dấu = xảy ra khi x = y = 2
+) \(P^2=\frac{x+y+8}{\left(xy+1\right)^2}=\frac{16-xy}{\left(xy+1\right)^2}\le\frac{16}{1}=4\)
\(\Rightarrow P\le4\)
Dấu = xảy ra khi \(\orbr{\begin{cases}x=8;y=0\\x=0;y=8\end{cases}}\)