Cho ∆ABC nhọn (AB < AC). Gọi D; E và F lần lượt là trung điểm AB; AC và BC.
a) Chứng minh DEFB là hình bình hành.
b) Chứng minh ADFE là hình bình hành.
c) Chứng minh DECF là hình bình hành.
d) Gọi I là trung điểm DE. Chứng minh A; I và F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé. EF cắt AH tại L.
Xét tam giác AIM vuông tại I(MI vuông góc AB) có HF//IM ( H là trực tâm nên HF vuông góc AB, từ vuông góc đến song song >> HF//IM) >> \(\frac{AF}{AI}=\frac{AH}{AM}\left(Talet\right)\)
CMTT >> \(\frac{AE}{AK}=\frac{AH}{AM}\left(Talet\right)\)>> \(\frac{AF}{AI}=\frac{AE}{AK}\). Theo Talet đảo có EF // IK.
Xét tam giác AIK có EF // IK >> AEF đồng dạng AIK ( bạn tự cm, quá dễ) >> góc AFE = góc AIK và góc AEF = góc AKI
Xét tam giác AFL và tam giác AID : chung góc A và AFL = AID (cmt) >> AFL đồng dạng AID >> ALF = ADI đồng vị >> ID // EL
CMTT thì LE // DK. Có E,L,F thẳng hàng nên theo tiên đề Euclid suy ra I,D,K thẳng hàng.
bạn ơi, AFL=AID đang cần chứng minh mà, AFL=AIK mới đúng. nếu AFL=AID=AIK thì I,D,K thẳng hàng rồi.
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
Xét ΔMBC có HB<HC
mà HB là hình chiếu cua MB trên BC
và HC là hình chiếu của MC trên BC
nên MB<MC
b: Ta có: ΔMHB vuông tại H
nên \(\widehat{DMH}>90^0\)
=>DM<DH
Em chưa nhờ được.
Có Hoàng Thị Ngọc Anh làm rồi thì em không làm nữa nhé!
nhưng p ý chưa làm giúp cj câu b e à, cj thấy câu b lằng nhằng wa!!!
Hay e nhờ giúp cj bài này đc k Nguyễn Đinh Huyền Mai: https://hoc24.vn/hoi-dap/question/215023.html