K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

giúp mình với mai nộp rồi

3 tháng 5 2019

a) Ta có:

4.(a + 5b - 2c) + 13

mà theo đề ra ta có: a + 5b - 2c= 3

nên suy ra: 4.(a + 5b - 2c) + 13

= 4.3+13=12+13 = 25 = 5^2

Vậy 4a + 20b - 8c + 13 là bình phương của 5

b) Ta có:

4.(a + 5b) + 12c + 12

mà theo đề ra ta có: a + 5b = 11 - 3c

nên suy ra: 4.( a + 5b) + 12c + 12

= 4.11- 3c+ 12c + 12

= 4.(11-3c) + 12c + 12

= 44-12c + 12c + 12

= (-12c + 12c) + 44 + 12

= 56

Chúc bn hc tốt!!

3 tháng 5 2019

Cảm ơn bn ngehahayeuvui

sao bn giỏi thế!

mik nghĩ mãi mà ko ra!hihi

20 tháng 12 2021

b: \(A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{58}\right)⋮13\)

20 tháng 12 2021

\(a,\Leftrightarrow2A=8+2^3+2^4+...+2^{21}\\ \Leftrightarrow2A-A=8+2^3+2^4+...+2^{21}-4-2^2-2^3-...-2^{20}\\ \Leftrightarrow A=2^{21}+8-4-2^2=2^{21}\left(đpcm\right)\\ b,A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ A=13\left(3+3^4+...+3^{58}\right)⋮13\)

6 tháng 12 2019

a ) A = 3 + 32 + 33 + ... + 32017 + 32018 + 32019

A = ( 3 + 32 + 33 ) + ... + ( 32017 + 32018 + 32019 )

A = 3 . ( 1 + 3 + 32 ) + ... + 32017 . ( 1 + 3 + 32 )

A = 3 . 13 + ... + 32017 . 13

A = 13 . ( 3 + ... + 32017 ) \(⋮\)13

Do đó : A = 3 + 3+ 33 + ... + 32017 + 32018 + 32019 \(⋮\)13

b ) Ta có : A = 3 + 32 + 3+ ... + 32017 + 32018 + 32019

A = 3 . ( 1 + 3 + 3+ ... + 32016 + 32017 + 32018 ) \(⋮\)3 ( 1 )

Ta lại có : A = 3 + 32 + 33 + ... + 32018 + 32019

A = 3 + 32 . ( 1 + 32 + 3+ ... + 32017 ) chia cho 9, dư 3 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là bình phương của một số tự nhiên

6 tháng 12 2019

Bạn ơi dòng 3

3.(1+3+3^2) là tính như nào vạy

28 tháng 2 2020

Đề bài cho thêm a,b thuộc Z thì cách này mới đúng nha

a)\(a+2b=a-b+3b\)

Vì \(a-b⋮3\)

    \(3b⋮3\)

\(\Rightarrow\left(a-b\right)+3b⋮3\)hay a+2b chia hết cho 3

b)\(2a-5b=2a-2b-3b=2\left(a-b\right)-3b\)

Vì \(a-b⋮3\Rightarrow2\left(a-b\right)⋮3\)

Mà \(3b⋮3\)

\(\Rightarrow2\left(a-b\right)-3b⋮3\)hay 2a-5b chia hết cho 3

c)\(23a-20b+2001\)

\(=20a-20b+3a+2001\)

\(=20\left(a-b\right)+3a+2001\)

Vì a-b chia hết cho 3\(\Rightarrow20\left(a-b\right)⋮3\)

Mà \(3a⋮3\);\(2001⋮3\)

\(\Rightarrow20\left(a-b\right)+3a+2001⋮3\)hay 23a-20b+2001chia hết cho 3

28 tháng 2 2020

a)a+2b=(a-b)+3b

do a-b chia hết cho 3

      3b chia hết cho 3

=> a+2b chia hết cho 3

b)2a-5b =2a-2b-3b

              =2(a-b)+3b

lí luận tương tự bên trên

c)23a-20b+2001=20a-20b+3a+2001

                          =20(a-b)+3a+2001

lí luận tương tự:))

Chúc bạn học tốt^^

23 tháng 2 2020

a) a-b chia hết cho 3 => 2(a-b) chia hết cho 3 => 2a-2b chia hết cho 3

Mà 3b chia hết cho 3 => (2a-2b) - 3b chia hết cho 3

=> 2a-5b chia hết cho 3 (đpcm)

b) a-b chia hết cho 3 => 20(a-b) chia hết cho 3 => 20a-20b chia hết cho 3

Mà 3a; 2001 chia hết cho 3 => (20a-20b) + 3a + 2001 chia hết cho 3

=> 23a-20b+2001 chia hết cho 3 (đpcm)

3 tháng 12 2019

a)A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2017+3^2018+3^2019)

A=(3+3^2+3^3)+3^3x(3+3^2+3^3)+...+3^2016x(3+3^2+3^3) suy ra A chia hết cho (3+3^2+3^3)

Mà (3+3^2+3^3)=39;39 chia hết cho 13 nên A chia hết cho 13

25 tháng 3 2018

Trả lời dc mh k cho ba k. Nhanh nha mình cần gấp

28 tháng 8 2021

\(\frac{a}{b}=\frac{c}{d}\)

\(\left(2a+3b\right)\left(4c-5d\right)=\left(4a-5b\right)\left(2c+3d\right)\)

\(\Leftrightarrow8ac-10ad+12bc-15bd=8ac+12ad-10bc-15bd\)

\(\Leftrightarrow-10ad+12bc=12ad-10bc\)

\(\Leftrightarrow\left(-10ad+12bc\right)+\left(-12bc-12ad\right)=\left(12ad-10bc\right)+\left(-12bc-12ad\right)\)

\(\Leftrightarrow22bc=22ad\)