Chứng minh :
a000...000 ( n số 0 ) : 9 = aaa...aaa ( n số a ) ( dư a )
với a < 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu số aaa là số tự nhiên thì lời giải là :
aaa chia hết cho 9 =>aaa \(\in\) B(9)
=> aaa \(\in\)(9;81;729;6561;...)
Mà aaa là số có 3 chữ số nên => aaa =729
a) Ta có aaa = 100a+10a+a = 111.a = 37.3.a chia hết cho 3
Tick nha?
a, aaa có tổng các chữ số là a+a+a = 3xa
Nên aaa luôn luôn chia hết cho a
b, Có: 6 đồng dư với 1 (mod 5)
=> 6 ^100 đồng dư vs 1^100 đồng dư với 1 ( mod 5)
=> 6^100 chia 5 dư 1
=> 6^100 - 1 chia hết cho 5
c, Xét aaa có a = 1, 2, 3, 4, 5, 6, 7, 8, 9
aaa chia hết cho 9 khi 3a chia hết cho 9 khi a = 3 hoặc a = 9
Toonggr các chữ số của aaa là a+a+a=3a.Mà 3a chia hết cho 3.=>aaa chia hết cho 3
1.Ta có: aaa=a.111=a.37.3 chia hết cho 3.
=>ĐPCM
2.Để aaa=a.111=a.37.3 chia hết cho 9=3.3
=>a.37 chia hết cho 3
mà (37,3)=1
=>a chia hết cho 3
=>a=Ư(3)=(3,6,9)
Vậy a=3,6,9
3.Ta có: a:3(dư 1)=>a=3m+1
b:3(dư 2)=>b=3n+2
=>a.b=(3m+1).(3n+2)=3m.(3n+2)+3n+2=3.(m.(3n+2)+n)+2
=>a.b:3(dư 2)
10.Thiếu dữ kiện về c.
11.Gọi số cần tìm là n.
Để n chia hết cho 3 và 9=>n chia hết cho 9.
Để n chia hết cho 5 và 25=>n chia hết cho 25.
=>n chia hết cho 2,9,11,25
mà (2,9,11,25)=1
=>n chia hết cho 2.9.11.25=4950
mà n nhỏ nhất
=>n=4950
a) Ta có: \(\overline{aaa}=111.a=37.3.a\) \(⋮\) \(37\)
b) \(\overline{87ab}\)\(⋮\)\(9\)
=> \(\left(8+7+a+b\right)\)\(⋮\)\(9\)
<=> \(\left(15+a+b\right)\)\(⋮\)\(9\)
do a,b là các chữ số => \(0\le a+b\le18\)
=> \(a+b=\left\{3;12\right\}\)
đến đây thử từng trừng hợp
Ta có:
a000...000 ( n số 0) = a.1000...0000(n số 0)
= a . (99999...999 +1) (n số 9)
= a . 99999...999 ( n số 9) + a
Ta thấy:
a . 9999...999 (n số 9) : 9 = a . 1111...11(n số 1) = aaaaa...aaa(n số a)
=> a . 999..999( n số 9) + a chia 9 sẽ được aaaaa...aaaa(n số a) và dư a
Hay a000..0000 (n số 0) : 9 = aaaaaa...aaa (n số a) (dư a)