Cho a,b,c là các số tự nhiên lẻ.Chứng minh rằng :
(a,b) = (a+b/2,b+c/2,a+c/2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Ư(16) = {1 ; 2 ; 4 ; 8 ; 16}
Ta lại có a;b là các số lẻ nên ab là số lẻ
Mà số lẻ không chia hết cho số chẵn
Nên (a ; ab + 16) = 1
1 và 2 đều dùng chung một cách giải .
Tổng của các phân số có tử số là một luôn là một phân số bé hơn một .
Vậy chúng đều không phải số tự nhiên .
Nguyễn Ngọc Đạt F12 ns vậy cũng nói, tổng các số bé hơn 1 là bé hơn 1 ak ??? 0.5<1 ; 0.75 , 1 mà 0.5 + 0.75 >1 đó
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
\(M=4a\left(a+b\right)\left(a+b+c\right)\left(a+c\right)+b^2c^2=4\left[a\left(a+b+c\right)\right]\left[\left(a+b\right)\left(a+c\right)\right]+b^2c^2\)
\(=4\left(a^2+ab+ac\right)\left(a^2+ab+ac+bc\right)+b^2c^2\)
\(=4\left(a^2+ab+ac\right)^2+4bc\left(a^2+ab+ac\right)+b^2c^2\)
\(=\left[2\left(a^2+ab+ac\right)+bc\right]^2\)là số chính phương
\(\frac{a}{c+b}>\frac{a}{a+b+c},\frac{b}{a+c}>\frac{b}{a+b+c},\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}=1\)
Lại có : \(\frac{a}{c+b}< \frac{2a}{a+b+c},\frac{b}{a+c}< \frac{2b}{a+b+c},\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)
=> đpcm
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)và\(\frac{b}{b+c}>\frac{b}{b+c+a}\)và \(\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 1\)
Vì \(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\left(c>0\right)\)
Chứng minh tương tự \(\frac{b}{b+c}< \frac{b+a}{b+c+a}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Vậy \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)