Cho m là số hữu hạn, c/m pt sau có 3 no pb
x3+(m-5)x2-5(m+2)x-6m+2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)
\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)
\(=m^2-2m+1+6m+7\)
\(=m^2+4m+8\)
\(=m^2+2.m.2+2^2+4\)
\(=\left(m+2\right)^2+4>0,\forall m\)
Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m
xét delta phẩy có
1+1-m = 2-m vậy điều kiện để phương trình có 2 nghiệm x1;x2 là m ≤2
theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=m-1\end{matrix}\right.\)
theo bài ra ta có:
2x1 + x2 = 5
x1 + 2 = 5 => x1 = 3 => x2 = -1
ta có x1x2 = m - 1 => m - 1 = -3
=> m = -2 vậy m = -2 để phương trình có 2 nghiệm x1;x2 thỏa mãn 2x1 + x2 = 5.
Δ=(-2)^2-4(m-3)
=4-4m+12=16-4m
Để phương trình có hai nghiệm dương phân biệt thì 16-4m>0 và m-3>0
=>m>3 và m<4
x1^2+x2^2=(x1+x2)^2-2x1x2
=2^2-2(m-3)=4-2m+6=10-2m
=>x1^2=10-2m-x2^2
x1^2+12=2x2-x1x2
=>10-2m-x2^2+12=2x2-m+3
=>\(-x_2^2+22-2m-2x_2+m-3=0\)
=>\(-x_2^2-2x_2-m+19=0\)
=>\(x_2^2+2x_2+m-19=0\)(1)
Để (1) có nghiệmthì 2^2-4(m-19)>0
=>4-4m+76>0
=>80-4m>0
=>m<20
=>3<m<4
Bài 1:
$2x^4-3x^2-5=0$
$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$
$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$
$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)
$\Leftrightarrow x^2=\frac{5}{2}$
$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$
Bài 2:
a. Khi $m=1$ thì pt trở thành:
$x^2-6x+5=0$
$\Leftrightarrow (x^2-x)-(5x-5)=0$
$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$
$\Leftrightarrow x=1$ hoặc $x=5$
b.
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$
$\Leftrightarrow m^2+14m+1\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=m+5$
$x_1x_2=-m+6$
Khi đó:
$x_1^2x_2+x_1x_2^2=18$
$\Leftrightarrow x_1x_2(x_1+x_2)=18$
$\Leftrightarrow (m+5)(-m+6)=18$
$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$
$\Leftrightarrow (m+3)(m-4)=0$
$\Leftrightarrow m=-3$ hoặc $m=4$
Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.
\(a)\) Ta có : \(\Delta=\left(-m\right)^2-4\left(m-3\right)=m^2-4m+12=\left(m^2-4m+4\right)+8=\left(m-2\right)^2+8>0\)
Vậy pt (1) có hai nghiệm phân biệt với mọi m
\(b)\) Có \(x_1^2+x_2^2=5\)\(\Leftrightarrow\)\(\left(x_1+x_2\right)^2-2x_1x_2=5\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-3\end{cases}}\)
(*) \(\Leftrightarrow\)\(m^2-2\left(m-3\right)=5\)
\(\Leftrightarrow\)\(m^2-2m+1=0\)
\(\Leftrightarrow\)\(m=1\)
Vậy để \(x_1^2+x_2^2=5\) thì \(m=1\)
\(c)\)......... -_-
Theo hệ thức Vi et( ý b) \(\hept{\begin{cases}X_1+X_2=m\\X_1.X_2=m-3\end{cases}\Rightarrow}X_1.X_2=X_1+X_2-3\)(thế \(X_1+X_2=m\)vô phương trình dưới)
Vậy hệ thức liên hệ giữa X1 X2 không chứa m là \(X_1X_2=X_1 +X_2-3\)
a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v