tìm x,y
/x-2016y/+/x-2014/<0
/x-1/+/x-2/+/y-3/+/x-4/=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta thấy: \(\begin{cases}\left|x-2016y\right|\ge0\\\left|x-2012\right|\ge0\end{cases}\)
\(\Rightarrow\left|x-2016y\right|+\left|x-2012\right|\ge0\)(1)
Mà \(\left|x-2016y\right|+\left|x-2012\right|\le0\)(2)
Từ (1) và (2) suy ra \(\left|x-2016y\right|+\left|x-2012\right|=0\)
\(\Rightarrow\begin{cases}\left|x-2012\right|=0\\\left|x-2016y\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x-2012=0\left(1\right)\\x-2016y=0\left(2\right)\end{cases}\)
\(\left(1\right)\Rightarrow x=2012\).Thay vào (2) ta có:
\(2012-2016y=0\)\(\Rightarrow2016y=2012\)\(\Rightarrow y=\frac{503}{504}\)(loại vì \(x,y\in Z\))
Vậy không tồn tại giá trị nào thỏa mãn
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
\(\left(x+\frac{2}{3}\right)^{2012}+\left|y-\frac{1}{4}\right|^{2000}+\left(x-y-z\right)^{2014}=0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{2}{3}=0\\y-\frac{1}{4}=0\\x-y-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=\frac{1}{4}\\z=-\frac{11}{12}\end{cases}}\).
f)
\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)
x-3={-4)=> x=-1