K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

 

 

 

\(36-\left(x+y\right)^2=\left(6-x-y\right)\left(6+x+y\right)\)

8 tháng 5 2016

P(x)=x(x+3)(x+1)(x+2)+1

P(x)=(x2+3x)(x2+3x+2)+1

Đặt x2+3x=a

Ta có:

P(x)=a(a+2)+1

P(x)=a2+2a+1

P(x)=(a+1)2

Vậy P(x)=(x2+3x)2

17 tháng 8 2018

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

20 tháng 10 2021

2)3x2-6xy+3y2=3(x2-2xy+y2)=3(x-y)2

3)3(x-y)-5y(y-x)=3(x-y)+5y(x-y)=(x-y)(3+5y)

5)(x+y)3-(x-y)3=[(x+y)-(x-y)][(x+y)2+(x+y)(x-y)+(x-y)2]=(x+y-x+y)(x2+2xy+y2+x2-y2+x2-2xy+y2)=2y(3x2+y2)

6)3x2-5x+2=3x2-2x-3x+2=(3x2-3x)-(2x-2)=3x(x-1)-2(x-1)=(x-1)(3x-2)

(x-y)2-4

=(x-y)2-22

=(x-y+2).(x-y-2)

17 tháng 9 2016

\(\left(x-y\right)^2-4\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

Phân tích đa thức (x^2 + y^2 + z^2)(x + y + z)^2 + (xy + yz + zx)^2 thành nhân tử

phân tích đa thức thành nhân tử đặt biến phụ

(x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2

 
 Theo dõi Vi phạm
 
 
 
 
 
 
 
 
 
 
VDO.AI

Trả lời (1)

 
 
 
  • Bùi Xuân Chiến

    (x+ y+ z2)(x + y + z)2 + (xy + yz +zx)2

    = (x+ y+ z2)(x+ y+ z+ 2xy +2yz +2zx) + (xy + yz + zx)2

    = (x+ y+ z2)(x2 + y2 + z2) + (x+ y2 + z2)(2xy + 2yz + 2zx) + (xy + yz +zx)2

    = (x+ y2 + z2)2 + 2(x+ y2 + z2)(xy + yz + zx) + (xy + yz + zx)2

    = (x2 + y2 + z+ xy + yz + zx)2

    Đảm bảo ko phân tích tiếp đc nữa đâu ^^, đây tuy ko phải cách đặt biến phụ nhưng cách này chắc ngắn hơn cách đặt biến phụ.

      bởi Bùi Xuân Chiến 1.png
24 tháng 9 2016

\(=16-\left(x^2-2xy+y^2\right)\)

\(=4^2-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)

25 tháng 9 2017

\(x^5-x^4-x^3-x^2-x-2=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2\)

\(=x^4\left(x-2\right)+x^3\left(x-2\right)+x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\)

\(=\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)\)

3 tháng 9 2021

\(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]=\left(x-1\right)\left(2\left(x^2-2x+1\right)-5x+5-1\right)=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)=\left(x-1\right)\left(2x^2-9x+6\right)\)

3 tháng 9 2021

\(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\)

\(=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\)

\(=\left(x-1\right)\left[2\left(x^2-2x+1\right)-5\left(x-1\right)-1\right]\)

\(=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)\)

\(=\left(x-1\right)\left(2x^2-9x+6\right)\)