A=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{2005^2}\)<\(\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/2.2 +1/3.3 +1/4.4 +...........+ 1/2005.2005
=1-1/2+1/2-1/3+1/3-1/4+............+1/2004-1/2005
=1-1/2005<1
suy ra 1-1/2005<3/4
vậy..................
Ta có \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
áp dụng vào làm
Ta có \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\Rightarrow\frac{1}{3}.B=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}\)
\(\Rightarrow B-\frac{1}{3}.B=\frac{1}{3}-\frac{1}{3^{2006}}\)
\(\frac{2}{3}.B=\frac{1}{3}-\frac{1}{3^{2006}}\)
\(B=\left(\frac{1}{3}-\frac{1}{3^{2006}}\right):\frac{2}{3}\)
\(B=\frac{1}{3}:\frac{2}{3}-\frac{1}{3^{2006}}:\frac{2}{3}=\frac{1}{2}-\frac{1}{2.3^{2005}}< \frac{1}{2}\)
Gọi a là tử số, b là mẫu số của phân số A
a = \(\frac{2008}{1}\)+ \(\frac{2007}{2}\)+ \(\frac{2006}{3}\)+ ... + \(\frac{1}{2008}\)
Dãy số a có (2008 - 1) : 1 + 1 = 2008 số. Và a = ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) x (2008 : 2)
b = \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)+ ... + \(\frac{1}{2009}\)
Dãy số b có (2009 - 2) : 1 + 1 = 2008 số. Và b = (\(\frac{1}{2}\)+ \(\frac{1}{2009}\)) x (2008 : 2)
A = [ ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) x (2008 : 2)] : [ (\(\frac{1}{2}\)+ \(\frac{1}{2009}\)) x (2008 : 2)] = ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) : (\(\frac{1}{2}\)+ \(\frac{1}{2009}\))
A = \(\frac{\text{2008 x2008 + 1}}{2008}\)x \(\frac{2x2009+2}{2x2009}\)
A = 2008
1/1^2<1/1×2=1/1-1/2
1/3^2<1/2×3=1/2×1/3
......................................
1/2005^2<1/2004×1/2005
=>1/2^2+1/3^2+...+1/2005^2<1-1/2+1/2-1/3+...-1/2005=1-1/2005=3/6015<3/4
=>A<1/4