K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

link nè : https://olm.vn/hoi-dap/detail/218521237432.html

19 tháng 4 2019

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

\(=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\)(*)

Đặt \(x^2-5x+4=a\)

(*)\(\Leftrightarrow a\left(a+2\right)\)

\(=a^2+2a\)

\(=a^2+2a+1-1\)

\(=\left(a+1\right)^2-1\ge-1\forall a\)

Dấu "=" xảy ra \(\Leftrightarrow a=-1\Leftrightarrow x^2-5x+4=-1\)

\(\Leftrightarrow x^2-5x+5=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\left(\frac{\pm\sqrt{5}}{2}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+5}{2}\\x=\frac{-\sqrt{5}+5}{2}\end{cases}}\)

18 tháng 7 2017

\(A=4.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=\frac{3^{32}-1}{2}< 3^{32}-1=B\)

Vậy \(A< B\)

9 tháng 5 2017

2A=2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ...+2/2014.2015.2016

Ta có: 2/1.2.3=1/1.2-1/2.3; 2/2.3.4=1/2.3-1/3.4; 2/3.4.5=1/3.4-1/4.5; ....; 2/2014.2015.2016=1/2014.2015-1/2015.2016

=> 2A=1/1.2-1/2015.2016

=> 2A < 1/2 => A < 1/4

31 tháng 8 2017

nbvbvvvxcvcgf

10 tháng 8 2023

2/ 

a) Ta có:

\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)

Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)

b) Ta có:

\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)

\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)

Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)

10 tháng 8 2023

3/

a)ĐKXĐ: \(x\ne1;x\ge0\)

b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)

\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)

\(A=1^2-\left(\sqrt{x}\right)^2\)

\(A=1-x\)

13 tháng 7 2017

\(x+x+\frac{1}{5}+x+\frac{2}{5}+x+\frac{3}{5}+x+\frac{4}{5}=5x+\frac{10}{5}\)

\(5x+2>5x\)

\(A>B\)

13 tháng 7 2017

\(x+x+\frac{1}{5}+x+\frac{2}{5}+x+\frac{3}{5}+x+\frac{5}{5}=5x+\frac{10}{5}\)

\(5x+2>5x\)

\(A>B\)

1 tháng 7 2019

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)

\(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2014^2}\right)\)

\(-A=\frac{3}{2\cdot2}\cdot\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot...\cdot\frac{4056195}{2014\cdot2014}\)

\(-A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}\)

\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}\)

\(-A=\frac{1\cdot2015}{2014\cdot2}=\frac{2015}{4028}\)

\(A=\frac{-2015}{4028}\)

2 tháng 12 2019

a) \(Q=\frac{x^4-x^2+2x+2}{x^4+x^3+x+1}\)

\(Q=\frac{x^2\left(x^2-1\right)+2\left(x+1\right)}{x^3\left(x+1\right)+\left(x+1\right)}\)

\(Q=\frac{x^2\left(x+1\right)\left(x-1\right)+2\left(x+1\right)}{\left(x+1\right)\left(x^3+1\right)}\)

\(Q=\frac{\left(x+1\right)\left[x^2\left(x-1\right)+2\right]}{\left(x+1\right)\left(x^3+1\right)}\)

\(Q=\frac{x^3-x^2+2}{x^3+1}\)

b) \(Q=\left|Q\right|=\frac{x^3-x^2+2}{x^3+1}\)

15 tháng 8 2023

1) ĐKXĐ của phân thức là : \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-3\ne0\\x-9\ne0\\\sqrt{x}+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\\\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\ne0\\\sqrt{x}\ne-3\left(LĐ\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Ta có : \(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right)\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\left(\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}.\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\)

\(P=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)

2) Với \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{3}-1\)

Do đó : \(P=\dfrac{\sqrt{3}-1+3}{\sqrt{3}-1+1}\)

\(P=\dfrac{\sqrt{3}+2}{\sqrt{3}}=\dfrac{3+2\sqrt{3}}{3}\)

3) Xét hiệu của : P với 3 

\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-3\)

\(=\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\)

Ta thấy : \(\sqrt{x}+1\ge1;-2\sqrt{x}\le0\)

\(\Rightarrow\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\le0\)

\(\Rightarrow P\le3\)

Dấu bằng xảy ra : \(\Leftrightarrow x=0\). Thế lại ta thấy ktm nên P<3