K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 3 2019

Lời giải:

Ta có:

\(P(-1)=a(-1)+b=-a+b=5(1)\)

\(P(-2)=a(-2)+b=-2a+b=7(2)\)

Lấy \((1)-(2)\Rightarrow (-a+b)-(-2a+b)=-2\)

\(\Leftrightarrow a=-2\)

\(\Rightarrow b=5+a=5+(-2)=3\)

Vậy \(a=-2; b=3\)

NV
31 tháng 8 2021

\(f\left(0\right)=2010\Rightarrow a.0^2+b.0+c=2010\Rightarrow c=2010\)

\(f\left(1\right)=2011\Rightarrow a.1^2+b.1+c=2011\Rightarrow a+b+c=2011\)

\(\Rightarrow a+b+2010=2011\Rightarrow a+b=1\) (1)

\(f\left(-1\right)=2012\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=2012\)

\(\Rightarrow a-b+c=2012\Rightarrow a-b+2010=2012\)

\(\Rightarrow a-b=2\Rightarrow a=b+2\)

Thế vào (1) \(\Rightarrow b+2+b=1\Rightarrow2b=-1\Rightarrow b=-\dfrac{1}{2}\)

\(\Rightarrow a=b+2=-\dfrac{1}{2}+2=\dfrac{3}{2}\)

\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{1}{2}x+2010\)

\(\Rightarrow f\left(-2\right)=\dfrac{3}{2}.\left(-2\right)^2-\dfrac{1}{2}.\left(-2\right)+2010=2017\)

3 tháng 3 2016

bn đặt chia bình thường dj

3 tháng 3 2016

rồi sao nữa pn Anh Tú

4 tháng 5 2022

`a)`

`A(x) + B(x) = 2x - 4x^2 + 1 + x^3 - 4x^2 + 5 - 2x`

                  `= x^3 - ( 4x^2 + 4x^2 ) + ( 2x - 2x ) + ( 1+ 5 )`

                  `= x^3 - 8x^2 + 6`

__________________________________________________________

`b)`

    `P(x) + B(x) = A(x)`

`=>P(x) = A(x) - B(x)`

`=>P(x) = 2x - 4x^2 + 1 + x^3 + 4x^2 - 5 + 2x`

`=>P(x) = x^3 + ( -4x^2 + 4x^2 ) + ( 2x + 2x ) + ( 1 - 5 )`

`=>P(x) = x^3 + 4x - 4`

28 tháng 7 2017

a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)

=> \(1-a-9+b=27-9a-27+b\)

=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)

Từ đó tính được b = 9.

b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)

Đa thức f(x) có nghiệm khi:

\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)

Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=-1\\2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)