Tìm dư khi chia \(x+x^3+x^9+x^{27}\) cho \(x^2-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{27}+x^9-3x+x^3+4x=x\left(\left(x^2\right)^{13}-\left(1^2\right)^{13}\right)+x\left(\left(x^4\right)^2-\left(1^4\right)^2\right)+x\left(x^2-1\right)+4x\\ \)
\(x\left(x^2-1\right)Q\left(x\right)+x\left(\left(x^2\right)^2-\left(1\right)^2\right)\left(x^4+1\right)P\left(x\right)+x\left(x^2-1\right)+4x\)
Chia x^2-1 dư 4x
gọi Q(x) là thương và ax+b là số dư của phép chia trên. ta có:
\(x+x^3+x^9+x^{27}+x^{81}=\left(x^2-1\right).Q\left(x\right)+ax+b\)
với x = 1 thì: a + b = 5 (1)
với x = -1 thì: -a + b = -5 (2)
từ (1); (2) => b = 0; a = 5
=> số dư của phép chia là 5x
\(\left(x^3+27\right):\left(x^2-3x+9\right)=\left(x+3\right)\left(x^2-3x+9\right):\left(x^2-3x+9\right)=x+3\) \(x^3+27\) chia hết cho \(x^2-3x+9\) ,Vậy số dư là 0
\(P\left(x\right)=x^{27}+x^9+x^3+x\)
\(Q\left(x\right)=x^2-1\)
Do Q(x) bậc 2 nên số dư cao nhất là bậc, 1 giả sử \(P\left(x\right)=Q\left(x\right).R\left(x\right)+ax+b\)
\(\Leftrightarrow x^{27}+x^9+x^3+x=\left(x^2-1\right)R\left(x\right)+ax+b\)
Thay \(x=1\Rightarrow4=a+b\)
Thay \(x=-1\Rightarrow-4=-a+b\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\-a+b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=0\end{matrix}\right.\) \(\Rightarrow\) P(x) chia Q(x) dư \(4x\)