K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2023

Đặt n = 3k \(\left(k\inℕ\right)\)

Khi đó P = 9k2 + 3k + 1 = 3k(3k + 1) + 1 \(⋮̸3\)

=> \(P⋮̸9\)

Tương tự với n = 3k + 1

P = 9k2 + 9k + 3 = 9k(k + 1) + 3\(⋮̸9\)

Với n = 3k + 2 

P = 9k2 + 15k + 7 = 3k(3k + 5) + 7 \(⋮̸3\Leftrightarrow P⋮̸9\)

=> ĐPCM 

10 tháng 11 2018

ui mình cũng đang mắc phải bài này......huhu

10 tháng 11 2018

Câu hỏi của Nghị Hoàng - Toán lớp 6 - Học toán với OnlineMath tham khảo

2 tháng 4 2020

G/s: A = \(n^2+7n+7⋮49\)

=> \(n^2⋮49\)

=> \(n⋮7\)

Đặt : n = 7 k 

Khi đó: \(A=49k^2+49k+7⋮49\)

=> \(7⋮49\) vô lí 

=> Điều g/s là sai 

Vậy A không thể chia hết cho 49.

3 tháng 4 2020

cảm ơn bn nhìu

2 tháng 4 2023

n2+5n+5=(n2+5n)+5

   n2+5n=n.(n+5)

    xét hiệu: (n+5)-n

         mà 5 chia hết cho 5 

=> (n+5)-n chia hết cho 5

hai số (n+5) và n chia hết cho 5 hoặc (n+5) và n chia cho 5 cùng số dư 

th1:hai số (n+5) và n chia hết cho 5 

=> n+5 chia hết cho 5 và n chia hết cho 5

=> n.(n+5) chia hết cho 5 

mà 5 không chia hết cho 25 

=> n2 +5n+5 không chia hết cho 25

th2: n+5 và n  chia cho 5 cùng số dư 

=> n+5 không chia hết cho 5 và n không chia hết cho 5 

=> n.(n+5) không chia hết cho 25

mà 5 chia hết cho 5 

=> n2 + 5n + n  không chia hết cho 25 

vậy với n thuộc N thì n2+5n+5 không chia hết cho 25 

chú ý: không chia hết viết bằng kí hiệu 

9 tháng 11 2021

\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)

Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn

Do đó \(n\left(n+1\right)+1\) lẻ

Vậy \(n^2+n+1⋮̸4\)

9 tháng 11 2021

a) chịu

b) n2 + n + 1= n3 + 1(ơ, n=1 đc mà)

23 tháng 10 2023

a: \(2x+3⋮x-2\)

=>\(2x-4+7⋮x-2\)

=>\(x-2\in\left\{1;-1;7;-7\right\}\)

=>\(x\in\left\{3;1;9;-5\right\}\)

mà x là số tự nhiên

nên \(x\in\left\{1;3;9\right\}\)

b:Cái mệnh đề này sai với n=5 nha bạn