Chứng minh với n là số tự nhiên thì n2+7n+2021 không chia hết cho 25.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G/s: A = \(n^2+7n+7⋮49\)
=> \(n^2⋮49\)
=> \(n⋮7\)
Đặt : n = 7 k
Khi đó: \(A=49k^2+49k+7⋮49\)
=> \(7⋮49\) vô lí
=> Điều g/s là sai
Vậy A không thể chia hết cho 49.
n2+5n+5=(n2+5n)+5
n2+5n=n.(n+5)
xét hiệu: (n+5)-n
mà 5 chia hết cho 5
=> (n+5)-n chia hết cho 5
hai số (n+5) và n chia hết cho 5 hoặc (n+5) và n chia cho 5 cùng số dư
th1:hai số (n+5) và n chia hết cho 5
=> n+5 chia hết cho 5 và n chia hết cho 5
=> n.(n+5) chia hết cho 5
mà 5 không chia hết cho 25
=> n2 +5n+5 không chia hết cho 25
th2: n+5 và n chia cho 5 cùng số dư
=> n+5 không chia hết cho 5 và n không chia hết cho 5
=> n.(n+5) không chia hết cho 25
mà 5 chia hết cho 5
=> n2 + 5n + n không chia hết cho 25
vậy với n thuộc N thì n2+5n+5 không chia hết cho 25
chú ý: không chia hết viết bằng kí hiệu
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
a: \(2x+3⋮x-2\)
=>\(2x-4+7⋮x-2\)
=>\(x-2\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{3;1;9;-5\right\}\)
mà x là số tự nhiên
nên \(x\in\left\{1;3;9\right\}\)
b:Cái mệnh đề này sai với n=5 nha bạn