8x-38=6x-52
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-28-5x=-118
5x=-28 - -118
5x= -90
x=-90:5
x=-18
6x+17=59
6x=59-17
6x=42
x=42:6
x=7
-38+8x=-102
8x=-102 - -38
8x=-64
x=-64:8
x=-8
Mình không biết có đúng không nữa nhưng mk mong bạn sẽ k mk
-28-5x=-118 6x+17=59
5x=-28+(-118) 6x =59-17
5x=-146 . 6x =42
=>x=-29,2 =>x=7
-38+8x=-102
8x=-102+(-38)
8x=-140
=>x=-17,5
tk cho mk nha
\(A=-8x^2-6x=-2\left(4x^2+3x\right)=-2\left(4x^2+2.\frac{3}{4}.2x+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left(2x+\frac{3}{4}\right)^2+\frac{9}{8}\le\frac{9}{8}\)
=> Min A = 9/8
Dấu "=" xảy ra <=> \(2x+\frac{3}{4}=0\)
<=> x = -3/8
Vậy Min A = 9/8 <=> x = -3/8
Trả lời:
\(A=-8x^2-6x=-2\left(4x^2+3x\right)=-2\left(4x^2+2.2x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left[\left(2x+\frac{3}{4}\right)^2-\frac{9}{16}\right]=-2\left(2x+\frac{3}{4}\right)^2+\frac{9}{8}\le\frac{9}{8}\forall x\)
Dấu "=" xảy ra khi \(2x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{8}\)
Vậy GTLN của A = 9/8 khi x = - 3/8
b, \(B=5x-4x^2=-\left(4x^2-5x\right)=-\left(4x^2-2.2x.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}\right)\)
\(=-\left[\left(2x-\frac{5}{4}\right)^2-\frac{25}{16}\right]=-\left(2x-\frac{5}{4}\right)^2+\frac{25}{16}\le\frac{25}{16}\forall x\)
Dấu "=" xảy ra khi \(2x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{8}\)
Vậy GTLN của B = 25/16 khi x = 5/8
\(19\) x \(\left(52+38\right)-9\) x \(\left(52+38\right)\)
\(=19\) x \(90-9\) x \(90\)
\(=\left(19-9\right)\) x \(90\)
\(=10\) x \(90\)
\(=900\)
a, \(F=x^2-8x+38\)
\(=x^2-8x+16+22\)
\(=\left(x-4\right)^2+22\ge22\)
Dấu " = " khi \(\left(x-4\right)^2=0\Leftrightarrow x=4\)
Vậy \(MIN_F=22\) khi x = 4
b, \(E=6x-x^2+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\le10\)
Dấu " = " khi \(-\left(x-3\right)^2=0\Leftrightarrow x=3\)
Vậy \(MAX_E=10\) khi x = 3
2:
a: =-(x^2-12x-20)
=-(x^2-12x+36-56)
=-(x-6)^2+56<=56
Dấu = xảy ra khi x=6
b: =-(x^2+6x-7)
=-(x^2+6x+9-16)
=-(x+3)^2+16<=16
Dấu = xảy ra khi x=-3
c: =-(x^2-x-1)
=-(x^2-x+1/4-5/4)
=-(x-1/2)^2+5/4<=5/4
Dấu = xảy ra khi x=1/2
1)
a) \(A=x^2+4x+17\)
\(A=x^2+4x+4+13\)
\(A=\left(x+2\right)^2+13\)
Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)
Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)
Vậy: \(A_{min}=13\) khi \(x=-2\)
b) \(B=x^2-8x+100\)
\(B=x^2-8x+16+84\)
\(B=\left(x-4\right)^2+84\)
Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)
Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)
Vậy: \(B_{min}=84\) khi \(x=4\)
c) \(C=x^2+x+5\)
\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)
1:
a: A=x^2+4x+4+13
=(x+2)^2+13>=13
Dấu = xảy ra khi x=-2
b; =x^2-8x+16+84
=(x-4)^2+84>=84
Dấu = xảy ra khi x=4
c: =x^2+x+1/4+19/4
=(x+1/2)^2+19/4>=19/4
Dấu = xảy ra khi x=-1/2
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) \(A=\left(x+1\right)\left(2x-1\right)\)
\(A=2x^2+2x-x-1\)
\(A=2x^2+x-1\)
\(A=2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)
\(A=2\left(x^2+2.x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-\dfrac{1}{2}\right)\)
\(A=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)
Vì \(2\left(x+\dfrac{1}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
\(\Rightarrow Amin=-\dfrac{9}{8}\Leftrightarrow x=-\dfrac{1}{4}\)
\(B=4x^2-4xy+2y^2+1\)
\(B=\left(2x\right)^2-2.2x.y+y^2+y^2+1\)
\(B=\left(2x-y\right)^2+y^2+1\)
Vì \(\left(2x-y\right)^2\ge0\) với mọi x và y
\(y^2\ge0\) với mọi y
\(\Rightarrow\left(2x-y\right)^2+y^2+1\ge1\)
\(\Rightarrow Bmin=1\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(C=5x-3x^2+2\)
\(C=-\left(3x^2-5x-2\right)\)
\(C=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)
\(C=-3\left(x^2-2.x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{25}{36}-\dfrac{2}{3}\right)\)
\(C=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)
Vì \(-3\left(x-\dfrac{5}{6}\right)^2\le0\) với mọi x
\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)
\(\Rightarrow Cmax=\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)
\(D=-8x^2+4xy-y^2+3\)
\(D=-\left(4x^2-4xy+y^2\right)-4x^2+3\)
\(D=-\left(2x-y\right)^2-4x^2+3\)
Vì \(-\left(2x-y\right)^2\le0\) với mọi x và y
\(-4x^2\le0\) với mọi x
\(\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\) với mọi x và y
\(\Rightarrow Dmax=3\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(E=x^2-8x+38\)
\(E=x^2-2.x.4+16+22\)
\(E=\left(x-4\right)^2+22\)
Vì \(\left(x-4\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-4\right)^2+22\ge22\) với mọi x
\(\Rightarrow Emin=22\Leftrightarrow x=4\)
\(F=6x-x^2+1\)
\(F=-\left(x^2-6x-1\right)\)
\(F=-\left(x^2-2.x.3+9-9-1\right)\)
\(F=-\left(x-3\right)^2+10\)
Vì \(-\left(x-3\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-3\right)^2+10\le10\)
\(\Rightarrow Fmax=10\Leftrightarrow x=3\)
8x-38=6x-52
8x-6x=38-52
2x =(-14)
x =(-14):2
x = (-7)
Vậy x=(-7)
\(8x-38=6x-52\)
\(\Rightarrow8x-6x=38-52\)
\(\Rightarrow2x=-14\)
\(\Rightarrow x=-14:2\)
\(\Rightarrow x=-7\)