K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

Ta có:\(S=2a+\frac{1}{a^2}\)

\(A=8a+8a+\frac{1}{a^2}-14a\)

\(A\ge3\sqrt[3]{8a\cdot8a\cdot\frac{1}{a^2}}-14\cdot\frac{1}{2}\)

\(A\ge14-7=5\)

"="<=>a=1/2

NV
26 tháng 3 2019

\(S=a+a+\frac{1}{8a^2}+\frac{7}{8a^2}\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8a^2}\ge\frac{3}{2}+\frac{7}{8.\left(\frac{1}{2}\right)^2}=5\)

\(\Rightarrow S_{min}=5\) khi \(a=\frac{1}{2}\)

NV
27 tháng 3 2019

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{1}{8a^2}\\a=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow x=\frac{1}{2}\)

16 tháng 11 2018

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

16 tháng 11 2018

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

22 tháng 9 2017

a)  ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)

tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)

=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)

mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)

cộng từng vế ta có \(S\ge9\)

dấu = xảy ra <=> a=b=c=1/2

câu 2 tương tự

22 tháng 9 2017

chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin

3 tháng 8 2016

C1: Áp dụng bđt Côsi:

\(B=a+a+\frac{1}{8a^2}+\frac{7}{8a^2}\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8.\left(\frac{1}{2}\right)^2}=5\)

Dấu bằng xảy ra khi \(a=\frac{1}{2}\)

3 tháng 8 2016

Đề: Cho  \(0< a\le\frac{1}{2}\) . Hãy tìm GTNN của  \(B=2a+\frac{1}{a^2}\)

\(------------\)

Ta có:

\(B=2a+\frac{1}{a^2}=\left(a+a+\frac{1}{8a^2}\right)+\frac{7}{8a^2}\)

Khi đó, áp dụng bất đẳng thức  \(AM-GM\) cho bộ số có ba số thực không âm gồm  \(\left(a;a;\frac{1}{8a^2}\right)\)  (theo gt)

nên do đó, ta có thể thiết lập bđt đối với biểu thức  \(B\) như sau:

\(B\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8a^2}=1\frac{1}{2}+\frac{7}{8a^2}\)

Kết hợp với điều kiện đã cho  \(0< a\le\frac{1}{2}\) , ta suy ra được  \(\frac{7}{8a^2}\ge\frac{7}{8\left(\frac{1}{2}\right)^2}=3\frac{1}{2}\)

Vậy,  \(B\ge1\frac{1}{2}+3\frac{1}{2}=5\)

Dấu  \("="\) xảy ra khi và chỉ khi  \(a=\frac{1}{2}\)

Vậy,  \(B_{min}=5\)  khi  \(a=\frac{1}{2}\)

18 tháng 10 2020

Áp dụng bất đẳng thức AM - GM cho 3 số dương, ta được: \(S=2a+\frac{1}{a^2}=\left(\frac{1}{a^2}+8a+8a\right)-14a\ge3\sqrt[3]{\frac{1}{a^2}.8a.8a}-14.\frac{1}{2}=5\)

Đẳng thức xảy ra khi a = 1/2

28 tháng 3 2018

Dùng Cô-si ngược dấu: 
Ta có : a\(1+b^2)=a-(ab^2/(1+b^2))>=a-(ab^2/2b)=... 
Tương tự ta có:b/(1+c^2)>=b-bc/2 
c/(1+a^2)>=c-ac/2 
Cộng vế với vế ta có A>=(a+b+c)-(ab+bc+ca)/2 
Mà 3(ab+bc+ca)<=a^2+b^2+c^2+2ab+2bc+2ca 
<=>3(ab+bc+ca)<=(a+b+c)^2 
<=>-(ab+bc+ca)>=-(a+b+c)^2/3 
Thay vào ta có: A>=(a+b+c)-(a+b+c)^2/6=3/2 
Dấu = xảy ra<=>a=b=c=1/3

28 tháng 3 2018

đề bài của mình mẫu là 1+2b^2 ko phải 1+b^2

5 tháng 4 2017

Deo biet