K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)

28 tháng 7 2015

\(M=a^2+\frac{1}{a}=\frac{a^2}{54}+\frac{1}{2a}+\frac{1}{2a}+\frac{53a^2}{54}\ge3\sqrt[3]{\frac{a^2}{54}.\frac{1}{2a}.\frac{1}{2a}}+\frac{53}{54}.3^2=\frac{1}{2}+\frac{53}{6}=\frac{28}{3}\)

Dấu "=" xảy ra khi a = 3.

\(N=a+\frac{1}{a}=\frac{a}{9}+\frac{1}{a}+\frac{8a}{9}\ge2\sqrt{\frac{a}{9}.\frac{1}{a}}+\frac{8}{9}.3=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu "=" xảy ra khi a = 3.

12 tháng 7 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Biến đổi vế 2 :

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )

\(=\frac{bc+ac+ab}{abc}\)

Ta có :

\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)

\(=\frac{abc+abc+abc}{abc}\)\(=3\)

→ ( a + b + c ) = 3

Ta có : 3 . 3 = 9 => ĐPCM