Tìm số nguyên n, sao cho :
\(\left(n-6\right)⋮\left(n-1\right)\)
HELP! PLEASE!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$
Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$
Vậy $(*)$ đúng với $n=1$
Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là:
$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$
Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là:
$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$
$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$
$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$
$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$
$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$
Do đó với $n=k+1$ thì $(*)$ đúng
$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$
GIẢI:
Để \(\left(n+5\right)\left(n+6\right)⋮6n\) thì \(\frac{\left(n+5\right)\left(n+6\right)}{6n}\in N\)
Xét \(\frac{\left(n+5\right)\left(n+6\right)}{6n}=\frac{n^2+11n+30}{6n}=\frac{1}{6}\left(n+11+\frac{30}{n}\right)\)
Để \(\frac{\left(n+5\right)\left(n+6\right)}{6n}\in N\)thì \(n\in\)Ư(30)
Sau đó thử vào \(\frac{1}{6}\left(n+11+\frac{30}{n}\right)\)Để loại các giá trị
Kết Quả: \(n\in\left\{1;3;10;30\right\}\)
Trước hết ta dùng quy tắc tổ hợp chứng minh điều này: \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\) luôn luôn là 1 số nguyên dương
Giả sử có \(n^2\) người, ta muốn chia họ vào n nhóm khác nhau, mỗi nhóm có đúng n người. Thứ tự của các nhóm và thứ tự mỗi người trong nhóm không quan trọng.
Xếp vị trí \(n^2\) người, có \(\left(n^2\right)!\) cách
Do trong các nhóm, vị trí mỗi người là không quan trọng nên mỗi nhóm bị lặp lại \(n!\) lần cách xếp (là hoán vị của n người trong nhóm). Như vậy, với n nhóm ta đã bị lặp lại: \(n!.n!...n!=\left(n!\right)^n\) lần xếp
Do vị trí của mỗi nhóm là không quan trọng, do đó khi xếp ta đã lặp lại thêm \(n!\) lần (là hoán vị của các nhóm với nhau)
Tổng cộng, ta đã lặp: \(\left(n!\right)^n.n!=\left(n!\right)^{n+1}\) lần xếp
Do đó, số cách xếp thực sự là: \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\)
Số cách xếp vị trí hiển nhiên phải là 1 số nguyên dương, do đó, \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\) cũng phải là 1 số nguyên dương
\(\Rightarrow\left(n^2\right)!=k.\left(n!\right)^{n+1}\) với k là số nguyên dương
Để \(\left(n!\right)^n⋮\left(n^2-1\right)!\Rightarrow\left(n!\right)^n=m.\left(n^2-1\right)!\) với m nguyên dương
\(\Rightarrow\left(n!\right)^n=m.\dfrac{\left(n^2\right)!}{n^2}=m.\dfrac{k.\left(n!\right)^{n+1}}{n^2}\)
\(\Rightarrow n!.k.m=n^2\)
\(\Rightarrow n=\left(n-1\right)!.k.m\ge\left(n-2\right)\left(n-1\right).k.m\ge\left(n-2\right)\left(n-1\right)\)
\(\Rightarrow n^2-4n+2\le0\)
\(\Rightarrow n\le2+\sqrt{2}\Rightarrow n=\left\{1;2;3\right\}\)
Thử lại chỉ có \(n=1\) thỏa mãn
Vậy \(n=1\) là số nguyên dương duy nhất thỏa mãn yêu cầu
Em cx ms nghĩ được 1 phần thôi ạ ; em dùng LTE ạ k biết có đúng k ?
Với mỗi số nguyên tố p và số nguyên dương q kí hiệu \(v_p\left(q\right)\) là số mũ đúng của p trong phân tích tiêu chuẩn ra thừa số nguyên tố của \(q!\)
C/m : n = 4 và n = p là số nguyên tố thì (n!)^n \(⋮̸\) \(\left(n^2-1\right)!\)
Thật vậy ; n = 4 thì \(v_2\left(4!\right)^4=4v_2\left(24\right)=12>11=v_2\left(4^2-1\right)!\)
=> (n!)^n \(⋮̸\) \(\left(n^2-1\right)!\)
CMTT với n = p
Tiếp theo ; ta c/m : n \(\ne4\) và \(n\ne p\) thì \(\left(n!\right)^n⋮\left(n^2-1\right)!\)
(Đoạn này e chưa ra)
\(-6.\left(2-x\right)=-18\)
\(-12+6x=-18\)
\(6x=-18+12\)
\(6x=-6\)
\(x=-1\)
Vậy \(x=-1\)
các bài khác bạn tự làm nha
Ta có \(1\sqrt{\left(6-2\sqrt{5}\right)^n}=\left(\sqrt{5}-1\right)^n\)
\(1\sqrt{\left(6+2\sqrt{5}\right)^n}=\left(\sqrt{5}+1\right)^n\)
Với n = 1 thì VT = \(2\sqrt{5}\ne6\)
Vố n \(\ge2\)thì VT \(\ge12\)
Vậy pt vô nghiệm
Nhận thấy n=2 thỏa mãn điều kiện
Với n>2 ta có:
\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n^3-1\right)\left(n+1\right)\left(n^2-n+1\right)\)
Do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n^3-1\)hoặc \(n^2-1=\left(n-1\right)\left(n+1\right)\)
Để ý rằng \(\left(n^2-n+1;n^3-1\right)\le\left(n^3+1;n^3-1\right)\le2\)
Mặt khác \(n^2-n+1=n\left(n-1\right)+1\)là số lẻ, do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n+1\)
Nhưng \(n^2-n+1=\left(n+1\right)\left(n-2\right)+3\)
Vì vậy ta phải có \(n^2-n+1=3^k\left(k\in Z^+\right)\)
Vì \(n>2\Rightarrow k\ge2\)
do đó \(3|n^2-n+1\Rightarrow n\equiv2\left(mod3\right)\)
Nhưng mỗi TH \(n\equiv2,5,8\left(mod9\right)\Rightarrow n^2-n+1\equiv3\left(mod9\right)\)(mâu thuẫn)
Vậy n=2
Bài làm rất hay mặc dù làm rất tắt.
Tuy nhiên:
Dòng thứ 4: Ước số nguyên tố của \(n^2-n+1\)chia hết cho \(n^3-1\)hoặc \(n^2-1\)( em viết thế này không đúng rồi )
------> Sửa: ước số nguyên tố của \(n^2-n+1\) chia hết \(n^3-1\) hoặc \(n^2-1\)
Hoặc: ước số nguyên tố của \(n^2-n+1\) là ước \(n^3-1\) hoặc \(n^2-1\)
Dòng thứ 6 cũng như vậy:
a chia hết b khác hoàn toàn a chia hết cho b
a chia hết b nghĩa là a là ước của b ( a |b)
a chia hết cho b nghĩa là b là ước của a.( \(a⋮b\))
3 dòng cuối cô không hiểu em giải thích rõ giúp cô với. Please!!!!
Nhưng cô có cách khác dễ hiểu hơn này:
\(n^2-n+1=3^k\);
\(n+1⋮3\)=> tồn tại m để : n + 1 = 3m
=> \(\left(n+1\right)\left(n-2\right)+3=3^k\)
<=>\(3m\left(n+1-3\right)+3=3^k\)
<=> \(m\left(n+1\right)-3m+1=3^{k-1}\)
=> \(m\left(n+1\right)-3m+1⋮3\)
=> \(1⋮3\)vô lí
\(\left(n-6\right)⋮\left(n-1\right)hay\left[\left(n-1\right)-5\right]⋮\left(n-1\right)\), suy ra \(\left(-5\right)⋮ \left(n-1\right)\), hay \(n-1\) là ước của -5. Do đó :
- Nếu n - 1 = -1 thì n = 0.
- Nếu n - 1 = 1 thì n = 2.
- Nếu n - 1 = -5 thì n = -4.
- Nếu n - 1 = 5 thì n = 6.
Thử lại :
- Với n = 0 thì n - 6 = -6, n - 1 = -1 và -6 \(⋮\) (-1)
- Với n = 2 thì n - 6 = -4, n - 1 = 1 và -4\(⋮\) 1
- Với n = -4 thì n - 6 = -10, n - 1 = -5 và -10 \(⋮\) ( -5 )
- Với n = 6 thì n - 6 = 0, n - 1 = 5 và 0\(⋮\) 5
Vậy n = { -4; 0; 2; 6 }