K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

a. \(m-2\ge\left(2m-1\right)x-3\Leftrightarrow m+1\ge\left(2m-1\right)x\)

Với \(2m-1=0\Rightarrow m=\frac{1}{2},bpt\Leftrightarrow\frac{3}{2}\ge0\) đúng với mọi x.

Với \(2m-1>0\Rightarrow m>\frac{1}{2},bpt\Leftrightarrow x\le\frac{m+1}{2m-1}\)

Với \(2m-1< 0\Rightarrow m< \frac{1}{2},bpt\Leftrightarrow x\ge\frac{m+1}{2m-1}\)

Với \(m>\frac{1}{2},\) S = ( \(-\infty;\frac{m+1}{2m-1}\)]

Vậy với \(m=\frac{1}{2}\Rightarrow S=R.\)

Với \(m< \frac{1}{2},\)S = [ \(\frac{m+1}{2m-1};+\infty\))

b. \(bpt\Leftrightarrow\frac{\left(ax+1\right)\left(a+1\right)-\left(ax-1\right)\left(a-1\right)}{a^2-1}>0\)

\(\Leftrightarrow\frac{2ax+2a}{a^2-1}>0\)

Với a > 1 thì \(a^2-1>0\Rightarrow ax+a>0\Rightarrow x+1>0\Rightarrow x>-1\forall a>1\)

Vậy với a > 1 thì bpt luôn có tập nghiệm \(S=\left(-1;+\infty\right)\)

26 tháng 4 2020

Phải là : ax(a+1) chứ nhỉ

14 tháng 4 2020

ĐKXĐ: a\(\ne0\)

-Với a>0, BPT trở thành:

\(\left(a+1\right)x+ax-1>1\)

\(\Leftrightarrow\left(2a+1\right)x>1\)

\(\Leftrightarrow x>\frac{2}{2a+1}\) với a>0

-Với a<0, BPT trở thành:

\(\left(2a+1\right)x< 2\)

\(\Leftrightarrow x< \frac{2}{2a+1}\)


27 tháng 4 2020

\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)

<=> \(x-\frac{b}{a}+\left(a+b+1\right)x>\frac{2b}{a}\)

<=> \(\left(a+b+2\right)x>\frac{3b}{a}\)

Giờ biện luận theo  a và b thôi

16 tháng 3 2018

       ax-b>bx+a

<=>ax-a>bx+b

<=>a(x-1)-b(x-1)>0

<=>(x-1)(a-b)>0

th1:x-1>0           th2:a-b>0

      x>1

Thx trc nếu bạn

16 tháng 3 2018

cảm ơn bạn nha

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)

\(ax-b>bx+a\)

Kết quả:

\(-\left(b-a\right)x-b-a>0\)

17 tháng 7 2019

ai nhanh k ĐÚNG

17 tháng 7 2019

\(P=\frac{x}{ax-a^2}-\frac{a}{x^2-ax}=\frac{x}{a\left(x-a\right)}-\frac{a}{x\left(x-a\right)}\)

\(=\frac{x^2}{ax\left(x-a\right)}-\frac{a^2}{ax\left(x-a\right)}=\frac{x^2-a^2}{ax\left(x-a\right)}\)

\(=\frac{\left(x-a\right)\left(x+a\right)}{ax\left(x-a\right)}=\frac{x+a}{ax}\)

\(\Rightarrow\frac{x+a}{ax}=0\)\(\Leftrightarrow x+a=0\)

Mà \(x>1\)\(\Rightarrow\)\(a< -1\)và \(a=-x\)

30 tháng 12 2015

ai tick đến 190 thì mik tick cho cả đời

30 tháng 12 2015

ai tick đến 190 thì mik tick cho cả đời