\(\frac{ }{3^8\cdot81}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8^{19}.14^{11}}{49^6.2^{68}}=\frac{1}{7}\)
\(\frac{9^{24}.27^{13}}{3^{65}.81^5}=\frac{9}{1}=9\)
( Bấm máy tính là ra kết quả )
Bài 2:
a: \(A=\dfrac{11\cdot10\left(1+5\cdot5+7\cdot7\right)}{11\cdot12\left(1+5\cdot5+7\cdot7\right)}=\dfrac{10}{12}=\dfrac{5}{6}\)
\(B=\dfrac{1}{8}\cdot\dfrac{125}{5}\cdot\dfrac{81}{81}\cdot\dfrac{64}{8}=25\)
\(Q=\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5.\left(3+1\right)}=\frac{2}{3.4}=\frac{1}{6}\)
Q = \(\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)
= \(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
= \(\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5.\left(3+1\right)}\)
= \(\frac{2}{3.4}=\frac{1}{6}\)
\(3^2\times\frac{1}{243}\times81^2\times\frac{1}{3^3}\)
\(=3^2\times\frac{1}{3^5}\times\left(3^4\right)^2\times\frac{1}{3^3}\)
\(=\left(3^2\times3^8\right)\times\left(\frac{1}{3^5}\times\frac{1}{3^3}\right)\)
\(=3^{10}\times\frac{1}{3^8}\)
\(=3^2\)
\(=9\)
\(\left(4\times2^5\right)\div\left(2^3\times\frac{1}{6}\right)\)
\(=\left(2^2\times2^5\right)\div\left(2^3\times\frac{1}{2\times3}\right)\)
\(=2^7\div2^2\times3\)
\(=2^5\times3\)
\(=96\)
\(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}\)
\(=3^2.\frac{1}{3^5}.\left(3^4\right)^2.\frac{1}{3^3}\)
\(=\left(3^2.3^8\right).\left(\frac{1}{3^5}.\frac{1}{3^3}\right)\)
\(=3^{10}.3^{-8}\)
\(=3^2=9\)
\(\left(4.2^5\right):\left(2^3.\frac{1}{6}\right)\)
\(=2^7:2^2.3\)
\(=2^5.3\)
\(=96\)
\(\frac{1}{27}\cdot81^n=3^n\)
\(\Leftrightarrow3^{-3}\cdot3^{4n}=3^n\)
\(\Leftrightarrow3^{4n-3}=3^n\)
\(\Leftrightarrow4n-3=n\)
\(\Leftrightarrow n=1\) ( thỏa mãn n nguyên dương )
Vậy : \(n=1\)
\(\frac{1}{27}.81^n=3^n\)
<=>\(\frac{81^n}{27}=3^n\)
<=>\(\frac{\left(3^4\right)^n}{3^3}=3^n\)
<=>\(\frac{3^{4n}}{3^3}=3^n\)
<=>\(3^3=3^{4n}:3^n\)
<=>\(3^3=3^{3n}\)
<=>\(3=3n\)
<=>\(n=1\)
Vậy \(n=1\)
\(3^8\cdot81\)
\(=3^8\cdot3^4\)
\(=3^{12}\)