K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

Là tập hợp tất cả các điểm cách O một khoảng bằng R

8 tháng 4 2019

Đường tròn tâm O, bán kính R là hình gồm các điểm cách O một khoảng bằng R, kí hiệu (O;R)

8 tháng 4 2020

Ta có nếu R là bán kính đường tròn nội tiếp của 1 tam giác đều cạnh a thì: \(R=\frac{a\sqrt{3}}{3}\) (*)

Dựng 2 tam giác đều BDF và tam giác CDG về phía ngoài tam giác ABC, khi đó \(\widehat{BFD}=\widehat{BED}=60^o\)\(\widehat{CGD}=\widehat{CED}=60^o\)

=> BDEF và CDEG là các tứ giác nội tiếp

Nên R1;R2 lần lượt là bán kính của các đường tròn ngoại tiếp các \(\Delta\) đều BDF và CDG

Theo (*) ta có: \(\hept{\begin{cases}R_1=\frac{BD\sqrt{3}}{3}\\R_2=\frac{CD\sqrt{3}}{3}\end{cases}\Rightarrow R_1R_2=\frac{BD\cdot CD}{3}}\)

Mặt khác \(\left(BD+CD\right)^2=4\cdot BD\cdot CD\)

\(\Rightarrow BD\cdot CD\le\frac{\left(BD+CD\right)^2}{4}=\frac{BC^2}{4}=\frac{3R^2}{4}\Rightarrow R_1R_2\le\frac{R^2}{4}\)

Đẳng thức xảy ra khi BD=CD

21 tháng 12 2021

a: AB=20

31 tháng 8 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

- Vẽ đường tròn (O;2cm)

- Vẽ hai đường kính AB và CD vuông góc với nhau

- Nối AB ,BC ,CD ,DA ta được tứ giác ABCD là hình vuông nội tiếp trong đường tròn (O;2cm)

- Vẽ đường kính EF vuông góc với AD ; đường kính GH vuông góc với CD

-Nối AE, ED, DG, GC, CF, FB, BH, HA ta được đa giác AEDGCFBH là đa giác đều tám cạnh nội tiếp trong đường tròn (O;2cm)