\(\frac{3x-1}{-4}\)= \(\frac{-16}{3x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)
a) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3x-24}\) \(ĐK:x\ne8\)
\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3\left(x-8\right)}\)
\(\Leftrightarrow\frac{3.3}{6.\left(x-8\right)}+\frac{6.\left(3x-20\right)}{6\left(x-8\right)}-\frac{2\left(3x-102\right)}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow\frac{9+18x-120-6x+204}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow\frac{12x+93}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow8\left(12x+93\right)=-6\left(x-8\right)\)
\(\Leftrightarrow96x+744=-6x+48\)
\(\Leftrightarrow102x=-696\)
\(\Leftrightarrow x=\frac{-116}{17}\) (nhận)
Vậy .....
b) \(\frac{1}{3-x}+\frac{14}{x^2-9}=\frac{x-4}{3+x}+\frac{7}{3+x}\) \(ĐK:x\ne\pm3\)
\(\Leftrightarrow\frac{1}{3-x}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{x-4}{3+x}+\frac{7}{3+x}\)
\(\Leftrightarrow-\frac{3+x}{\left(x-3\right)\left(3+x\right)}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{-3-x+14}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)
\(\Leftrightarrow-3-x+14=x^2-3x-4x+12+7x-21\)
\(\Leftrightarrow x=-5\) (nhận)
Vậy ....
Bài 1:
d)ĐKXĐ: \(x\ne8\)
Ta có: \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\)
\(\Leftrightarrow\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3x-24}=0\)
\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3\left(x-8\right)}=0\)
MTC=24(x-8)
\(\Leftrightarrow\frac{36}{24\left(x-8\right)}+\frac{72x-480}{24\left(x-8\right)}+\frac{3x-24}{24\left(x-8\right)}-\frac{104x-816}{24\left(x-8\right)}=0\)
\(\Leftrightarrow36+72x-480+3x-24-104x+816=0\)
\(\Leftrightarrow348-29x=0\)
\(\Leftrightarrow-29x+348=0\)
\(\Leftrightarrow x=\frac{-348}{-29}=12\)
Vậy: x=12
e) ĐKXĐ: \(x\ne\pm1\)
Ta có: \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4x+4}+\frac{12x-1}{4-4x}=0\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}+\frac{12x-1}{4\left(1-x\right)}=0\)
MTC=4(x+1)(x-1)
\(\Leftrightarrow\frac{24}{4\left(x-1\right)\left(x+1\right)}+\frac{20x^2-20}{4\left(x-1\right)\left(x+1\right)}-\frac{8x^2-9x+1}{4\left(x-1\right)\left(x+1\right)}-\frac{12x^2-11x-1}{4\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2+11x+1=0\)
\(\Leftrightarrow20x+4=0\)
\(\Leftrightarrow20x=-4\)
\(\Leftrightarrow x=-\frac{4}{20}=-0,2\)(loại)
Vậy: x không có giá trị
g) Ta có: \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1+\frac{x+1}{x-1}}=\frac{1}{2}\)
\(\Leftrightarrow\frac{\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}}{\frac{x-1}{x-1}+\frac{x+1}{x-1}}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2x}{x-1}}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-1}{2x}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{4x\cdot\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\cdot2x}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{2}=0\)
MTC=2(x+1)
\(\Leftrightarrow\frac{2}{2\left(x+1\right)}-\frac{x+1}{2\left(x+1\right)}=0\)
\(\Leftrightarrow2-x+1=0\)
\(\Leftrightarrow1-x=0\)
\(\Leftrightarrow x=1\)(loại vì không thỏa mãn ĐKXĐ)
Vậy: x không có giá trị
a)\(\frac{3x-2}{5}\ge\frac{x}{2}+0,8\) va \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\cdot\frac{3x-2}{5}\ge\frac{x}{2}+0,8\)
\(=\frac{2\left(3x-2\right)}{10}\ge\frac{5x}{10}+\frac{8}{10}\)
\(\Rightarrow2\left(3x-2\right)\ge5x+8\)
\(=6x-4\ge5x+8\)
\(=6x-5x\ge8+4\)
\(x\ge12\)(1)
\(\cdot1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(=\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)
\(\Rightarrow12-2\left(2x-5\right)>3\left(3-x\right)\)
\(=12-4x+10>9-3x\)
\(=-4x+3x>9-12-10\)
\(=-x>-13\)
\(=x< 13\) (2)
Từ (1) và (2) => \(13>x\ge12\)=> x=12
\(\frac{3x-1}{-4}=\frac{-16}{3x-1}\)
\(\Rightarrow\left(3x-1\right)^2=64\)
\(\Rightarrow\left(3x-1\right)^2=8^2\)
\(\Rightarrow3x-1=8\)
\(\Rightarrow3x=9\Rightarrow x=3\)
\(\frac{3x-1}{-4}=\frac{-16}{3x-1}\)
\(\left(3x-1\right)\left(3x-1\right)=\left(-16\right)\left(-4\right)\)
\(\left(3x-1\right)^2=64\)
mà \(64=8^2=\left(-8\right)^2\)
\(\Rightarrow3x-1=8\)hoặc \(3x-1=-8\)
\(\Rightarrow3x=9\)hoặc \(3x=-7\)
VẬY \(x=3\)hoặc \(x=\frac{-7}{3}\)