CMR: \(\left(8^{100}-1\right)⋮9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = - 522 - { - 222 - [ - 122 - (100 - 522) + 2022] }
A = - 522 - { -222 - [- 122 - 100 + 522 ] + 2022}
A = - 522 - { -222 - { - 222 + 522 } + 2022}
A = - 522 - {- 222 + 222 - 522 + 2022}
A = -522 + 522 - 2022
A = - 2022
B = 1 + \(\dfrac{1}{2}\)(1 + 2) + \(\dfrac{1}{3}\).(1 + 2 + 3) + ... + \(\dfrac{1}{20}\).(1 + 2+ 3 + ... + 20)
B = 1+\(\dfrac{1}{2}\)\(\times\)(1+2)\(\times\)[(2-1):1+1]:2+ ... + \(\dfrac{1}{20}\)\(\times\) (20 + 1)\(\times\)[(20-1):1+1]:2
B = 1 + \(\dfrac{1}{2}\) \(\times\) 3 \(\times\) 2:2 + \(\dfrac{1}{3}\) \(\times\)4 \(\times\) 3 : 2+....+ \(\dfrac{1}{20}\) \(\times\)21 \(\times\) 20 : 2
B = 1 + \(\dfrac{3}{2}\) + \(\dfrac{4}{2}\) + ....+ \(\dfrac{21}{2}\)
B = \(\dfrac{2+3+4+...+21}{2}\)
B = \(\dfrac{\left(21+2\right)\left[\left(21-2\right):1+1\right]:2}{2}\)
B = \(\dfrac{23\times20:2}{2}\)
B = \(\dfrac{23\times10}{2}\)
B = 23
a) Ta có: \(VT=\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
\(=\sqrt{\left(9-\sqrt{17}\right)\cdot\left(9+\sqrt{17}\right)}\)
\(=\sqrt{81-17}=\sqrt{64}=8\)=VP(đpcm)
b) Ta có: \(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)
=9=VP(đpcm)
a: \(=\dfrac{2^9\cdot5^9\cdot3^{40}}{2^{12}\cdot5^{10}\cdot3^{20}}=\dfrac{3^{20}}{5\cdot2^3}\)
b: \(=\dfrac{-3^8\cdot2^{10}\cdot5^6}{2^9\cdot\left(-1\right)\cdot3^6\cdot5^7}=\dfrac{-2}{5}\cdot3^2=-\dfrac{18}{5}\)
c: \(=\dfrac{3^{186}\cdot5^{100}}{5^{100}\cdot3^{187}}=\dfrac{1}{3}\)
Trong tích có thừa số 9 - 3^2 = 9 - 9 = 0
Vậy (7 - 3^0).(8 - 3^1).(9 - 3^2)...(107 - 3^100) = 0
Áp dụng bất đẳng thức Côsi ta có:
\("a+b+c""ab+bc+ac"\le\frac{8}{9}"a+b""b+c""c+a"\)
\(\Leftrightarrow a"b-c"^2+b"c-a"^2+c"a-b"^2\ge0\)luôn đúng
P/s: Máy mk lác dấu ngoặc đơn rồi nên dùng tạm dấu ngoặc kép thông cảm cho mk nhé
chủ acc cũ gà thật:vv
Xét \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(A=\left(1-\frac{1}{8}\right)\times\left(1-\frac{1}{9}\right)\times\left(1-\frac{1}{10}\right)\times...\times\left(1-\frac{1}{100}\right)\)
\(A=\frac{7}{8}\times\frac{8}{9}\times\frac{9}{10}\times...\times\frac{98}{99}\times\frac{99}{100}\)
\(A=\frac{7\times8\times9\times...\times98\times99}{8\times9\times10\times...\times99\times100}=\frac{7}{100}\)
=>A=7/8*8/9*9/10*...*99/100
=>A=(7*8*9*...*99)/(8*9*10*...*100)=7/100
Vậy A=.............
\(\left(a\right):P=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}....\dfrac{99}{100}\)
Nhận xét
thừa số tổng quát là \(\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\) với n =1 đến 10
\(P=\dfrac{1.3.2.4.3.5...9.11}{2^2.3^2...9^2.10^2}=\dfrac{\left(1.2.3...9\right)\left(3.4.5....11\right)}{\left(2.3.4....10\right)\left(2.3.4....10\right)}\)
\(P=\dfrac{1.2.3..9}{2.3.4..9.10}.\dfrac{3.4.5...10.11}{2.3.4....10}=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}\)
1.ta có :
\(\left(10^3+10^2+10+1\right)^2\)
=\(\left(1111\right)^2\)
=1234321
hc tốt
Ta có:\(8^2\equiv1\left(mod9\right)\)
\(\Rightarrow\left(8^2\right)^{50}=8^{100}\equiv1\left(mod9\right)\)
\(\Rightarrow\left(8^{100}-1\right)⋮9\left(đpcm\right)\)
Ta có 8\(\equiv\)-1(mod 9)=> 8100\(\equiv\)(-1)100\(\equiv\)1(mod 9)
=>8100-1\(⋮\)9(đpcm)